Distributed Neural Computation over WSN in Ambient Intelligence

  • Davide Bacciu
  • Claudio Gallicchio
  • Alessandro Lenzi
  • Stefano Chessa
  • Alessio Micheli
  • Susanna Pelagatti
  • Claudio Vairo
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 219)

Abstract

Ambient Intelligence (AmI) applications need information about the surrounding environment. This can be collected by means of Wireless Sensor Networks (WSN) that also analyze and build forecasts for applications. The RUBICON Learning Layer implements a distributed neural computation over WSN. In this system, measurements taken by sensors are combined by using neural computation to provide future forecasts based on previous measurements and on the past knowledge of the environment.

Keywords

Ambient Intelligence Wireless Sensor Networks Neural Networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baronti, P., et al.: Wireless sensor networks: a survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communications 30(7), 1655–1695 (2007)CrossRefGoogle Scholar
  2. 2.
    Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijiten, J., Burgelman, J.: Scenarios for ambient intelligence in 2010. IST Advisory Group, Tech. Rep. (February 2001)Google Scholar
  3. 3.
    Amato, G., Broxvall, M., Chessa, S., Dragone, M., Gennaro, C., López, R., Maguire, L., Mcginnity, T.M., Micheli, A., Renteria, A., O’Hare, G.P., Pecora, F.: Robotic uBIquitous cOgnitive network. In: Novais, P., Hallenborg, K., Tapia, D.I., Rodríguez, J.M.C. (eds.) Ambient Intelligence - Software and Applications. AISC, vol. 153, pp. 191–195. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR (1998)Google Scholar
  5. 5.
    Moustapha, A., Selmic, R.: Wireless sensor network modeling using modified recurrent neural networks: Application to fault detection. IEEE Trans. Instrum. Meas. 57(5), 981–988 (2008)CrossRefGoogle Scholar
  6. 6.
    Li, Y., Parker, L.: Detecting and monitoring time-related abnormal events using a wireless sensor network and mobile robot. In: IEEE/RSJ Int. Conf. on Intel. Robots and Systems, pp. 3292–3298 (2008)Google Scholar
  7. 7.
    Nakano, H., Utani, A., Miyauchi, A., Yamamoto, H.: Synchronization-based data gathering scheme using chaotic pulse-coupled neural networks in wireless sensor networks. In: Proceedings of the IJCNN 2008, pp. 1115–1121 (2008)Google Scholar
  8. 8.
    Kulkarni, R., Förster, A., Venayagamoorthy, G.: Computational intelligence in wireless sensor networks: A survey. IEEE Communications Surveys Tutorials 13(1), 68–96 (2011)CrossRefGoogle Scholar
  9. 9.
    Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Computer Science Review 3(3), 127–149 (2009)CrossRefGoogle Scholar
  10. 10.
    Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Networks 20(3), 391–403 (2007)MATHCrossRefGoogle Scholar
  11. 11.
    Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)CrossRefGoogle Scholar
  12. 12.
    Gallicchio, C., Micheli, A.: Architectural and markovian factors of echo state networks. Neural Networks 24(5), 440–456 (2011)CrossRefGoogle Scholar
  13. 13.
    Gallicchio, C., Micheli, A., Barsocchi, P., Chessa, S.: User movements forecasting by reservoir computing using signal streams produced by mote-class sensors. In: Del Ser, J., Jorswieck, E.A., Miguez, J., Matinmikko, M., Palomar, D.P., Salcedo-Sanz, S., Gil-Lopez, S. (eds.) Mobilight 2011. LNICST, vol. 81, pp. 151–168. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Bacciu, D., Gallicchio, C., Micheli, A., Chessa, S., Barsocchi, P.: Predicting user movements in heterogeneous indoor environments by reservoir computing. In: Proc. of IJCAI Workshop on Space, Time and Ambient Intelligence (STAMI), pp. 1–6 (2011)Google Scholar
  15. 15.
    Servicios, A.S.Y.: http://www.advanticsys.com
  16. 16.
    Gay, D., et al.: The nesC language: A holistic approach to networked embedded systems. In: Proc. of the ACM SIGPLAN 2003, pp. 1–11. ACM, NY (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Davide Bacciu
    • 1
  • Claudio Gallicchio
    • 1
  • Alessandro Lenzi
    • 1
  • Stefano Chessa
    • 1
    • 2
  • Alessio Micheli
    • 1
  • Susanna Pelagatti
    • 1
  • Claudio Vairo
    • 2
  1. 1.Dipartimento di InformaticaUniversity of PisaPisaItaly
  2. 2.ISTI-CNRPisaItaly

Personalised recommendations