Towards Self-Explaining Agents

  • Johannes Fähndrich
  • Sebastian Ahrndt
  • Sahin Albayrak
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 221)

Abstract

We advocate Self-Explanation as the foundation for the Self-* properties. Arguing that for system component to have such properties the underlining foundation is a awareness of them selfs and their environment. In the research area of adaptive software, self-* properties have shifted into focus pushing ever more design decisions to a applications runtime. Thus fostering new paradigms for system development like intelligent agents. This work surveys the state of the art methods of self-explanation in software systems and distills a definition of self-explanation.

Keywords

Self-Explanation Self-* Intelligent Agents Self-CHOP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Braubach, L., Pokahr, A., Moldt, D.: Goal representation for bdi agent systems. In: Multi-Agent Systems, pp. 44–65 (2005)Google Scholar
  3. 3.
    Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: A research roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Chi, M.T.: Self-explaining expository texts: The dual processes of generating inferences and repairing mental models. In: Advances in Instructional Psychology, vol. 5, pp. 161–238. Routledge (2000)Google Scholar
  5. 5.
    Cole, W.G.: Understanding bayesian reasoning via graphical displays. SIGCHI Bull. 20(SI), 381–386 (1989), doi:10.1145/67450.67522CrossRefGoogle Scholar
  6. 6.
    Druzdzel, M.J.: Qualitative verbal explanations in bayesian belief networks. Artificial Intelligence and Simulation of Behavior Quarterly 94, 43–54 (1996)Google Scholar
  7. 7.
    Duda, R.O., Stork, D.G., Hart, P.E.: Pattern classification and scene analysis. Part 1, Pattern classification, 2nd edn. Wiley (2000)Google Scholar
  8. 8.
    Elsaesser, C.: Explanation of probabilistic inference. In: Kanal, L.N., Levitt, T.S., Lemmer, J.F. (eds.) UAI, pp. 387–400. Elsevier (1987)Google Scholar
  9. 9.
    Grüninger, M., Hull, R., McIlraith, S.: A short overview of flows: A first-order logic ontology for web services. Data Engineering, 3 (2008)Google Scholar
  10. 10.
    Heckerman, D.E., Horvitz, E.J., Nathwani, B.N.: Toward normative expert systems: Part i. the pathfinder project. Methods of Information in Medicine 31, 90–105 (1992)Google Scholar
  11. 11.
    Hinchey, M.G., Sterrit, R.: Self-managing software. IEEE Computer 39(2), 107–109 (2006)CrossRefGoogle Scholar
  12. 12.
    Jennings, N.R.: An agent-based approach for building complex software systems. Communications of the ACM 44(4), 35–41 (2001) (forthcoming )CrossRefGoogle Scholar
  13. 13.
    Kaddoum, E., Raibulet, C., George, J.P., Picard, G., Gleizes, M.P.: Criteria for the evaluation of self-* systems. In: Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2010, pp. 29–38. ACM, New York (2010), doi:10.1145/1808984.1808988CrossRefGoogle Scholar
  14. 14.
    Kephart, J.O.: Autonomic computing: The first decade. In: Proceedings of the 8th ACM international conference on Autonomic Computing, ICAC 2011, pp. 1–2. ACM, New York (2011), http://doi.acm.org/10.1145/1998582.1998584, doi:10.1145/1998582.1998584Google Scholar
  15. 15.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003), doi:http://dx.doi.org/10.1109/MC.2003.1160055 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Klusch, M., Küster, U., Leger, A., Martin, D., Paolucci, M.: 4th international semantic service selection contest - performance evaluation of semantic service matchmakers (2010), http://www-ags.dfki.uni-sb.de/~klusch/s3/s3c-2010-summary-report-v2.pdf (last visited: November 1, 2013)
  17. 17.
    Leake, D.B.: Goal-based explanation evaluation. Cognitive Science 15(4), 509–545 (1991)CrossRefGoogle Scholar
  18. 18.
    Leake, D.B.: Evaluating Explanations A Content Theory. Psychology Press (1992)Google Scholar
  19. 19.
    Martin, D., et al.: Bringing Semantics to Web Services: The OWL-S Approach. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42. Springer, Heidelberg (2005), http://www.springerlink.com/index/rl5r1c8v64xvf0r8.pdf CrossRefGoogle Scholar
  20. 20.
    Morris, C.: Foundations of the Theory of Signs, vol. 1. University of Chicago Press (1938)Google Scholar
  21. 21.
    Müller-Schloer, C.: Organic computing – on the feasibility of controlled emergence. In: Orailoglu, A., Chou, P.H. (eds.) Proceedings of the 2nd IEEE/ACM/IFIP International Conference on Hardware/Software CoDesign and System Synthesis, CODES+ISSS 2004, pp. 2–5. ACM, New York (2004)CrossRefGoogle Scholar
  22. 22.
    Müller-Schloer, C., Schmeck, H.: Organic computing: A grand challenge for mastering complex systems. it – Information Technology 52(3), 135–141 (2010), doi:10.1524/itit.2010.0582Google Scholar
  23. 23.
    Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges. ACM Transactions on Autonomous and Adaptive Systems 4(2), 1–42 (2009), http://doi.acm.org/10.1145/1516533.1516538, doi:10.1145/1516533.1516538CrossRefGoogle Scholar
  24. 24.
    Sooriamurthi, R., Leake, D.: Towards situated explanation. In: Proceedings of the Twelth National Conference on Artifical Intelligence, p. 1492 (1994)Google Scholar
  25. 25.
    Sycara, K., Klusch, M., Widoff, S., Lu, J.: Dynamic service matchmaking among agents in open information environments. SIGMOD Record 28, 47–53 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Johannes Fähndrich
    • 1
  • Sebastian Ahrndt
    • 1
  • Sahin Albayrak
    • 1
  1. 1.DAI-LaborTechnische Universität BerlinBerlinGermany

Personalised recommendations