A New Approach for the Extraction of Moving Objects

  • Farou Brahim
  • Seridi Hamid
  • Akdag Herman
Part of the Studies in Computational Intelligence book series (SCI, volume 488)


We propose in this paper a background subtraction system for image sequences extracted from fixed camera using Gaussian Mixture Models (GMM) and the analysis of color histograms. This system can achieve best accuracy than a simple GMM while maintaining the same computational resources. Images extracted from the video will first be divided into several areas of equal size where the behavior of each area is monitored by the analysis of color histograms. For each new frame the color histograms of the zones will be calculated and parts reported to have significant variation in histogram will be updated at the background model. Test carried out show that this approach present best results than a simple GMM. This improvement is important for processing in real time environment.


Machine Vision Video surveillance Gaussian mixtures modeling the background image processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lai, J.-C., Huang, S.-S., Tseng, C.-C.: Image-based vehicle tracking and classification on the highway. In: 2010 International Conference on Green Circuits and Systems (ICGCS), June 21-23, pp. 666–670 (2010), doi:10.1109/ICGCS.2010.5542980Google Scholar
  2. 2.
    Bishop, A.N., Savkin, A.V., Pathirana, P.N.: Vision-Based Target Tracking and Surveillance With Robust Set-Valued State Estimation. IEEE Signal Processing Letters 17(3), 289–292 (2010), doi:10.1109/LSP.2009.2038772CrossRefGoogle Scholar
  3. 3.
    Woo, H., Jung, Y., Kim, J., Seo, J.: Environmentally Robust Motion Detection for Video Surveillance. IEEE Transactions on Image Processing PP(99), 1, doi:10.1109/TIP.2010.2050644Google Scholar
  4. 4.
    Li, Z., Wei, Z., Yin, B., Ji, X., Shan, R.: Pedestrian Detection Based on a New Two-Step Framework. In: 2010 Second International Workshop on Education Technology and Computer Science (ETCS), March 6-7, vol. 3, pp. 56–59 (2010), doi:10.1109/ETCS.2010.160Google Scholar
  5. 5.
    Hedayati, M., Zaki, W.M.D.W., Hussain, A.: Real-time background subtraction for video surveillance: From research to reality. In: 2010 6th International Colloquium on Signal Processing and Its Applications (CSPA), May 21-23, pp. 1–6 (2010), doi:10.1109/CSPA.2010.5545277Google Scholar
  6. 6.
    Kim, G.-J., Eom, K.-Y., Kim, M.-H., Jung, J.-Y., Ahn, T.-K.: Automated measurement of crowd density based on edge detection and optical flow. In: 2010 2nd International Conference on Industrial Mechatronics and Automation (ICIMA), May 30-31, vol. 2, pp. 553–556 (2010), doi:10.1109/ICINDMA.2010.5538248Google Scholar
  7. 7.
    Saleemi, I., Hartung, L., Shah, M.: Scene understanding by statistical modeling of motion patterns. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 13-18, pp. 2069–2076 (2010), doi:10.1109/CVPR.2010.5539884Google Scholar
  8. 8.
    Yuk, J.S.-C., Wong, K.-Y.K.: An efficient pattern-less background modeling based on scale invariant local states. In: 2011 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 285–290 (2011), doi:10.1109/AVSS.2011.6027338Google Scholar
  9. 9.
    Uzair, M., Khan, W., Ullah, H., Ur Rehman, F.: Background modeling using corner features: An effective approach. In: IEEE 13th International Multitopic Conference, INMIC 2009, pp. 1–5 (2009), doi:10.1109/INMIC.2009.5383113Google Scholar
  10. 10.
    Lei, T., Fan, Y., Li, L.: The Algorithm of Moving Human Body Detection Based on Region Background Modeling. In: International Symposium on Computer Network and Multimedia Technology, CNMT 2009, pp. 1–4 (2009), doi:10.1109/CNMT.2009.5374792Google Scholar
  11. 11.
    Lin, C.-Y., Chang, C.-C., Chang, W.-W., Chen, M.-H., Kang, L.-W.: Real-Time Robust Background Modeling Based on Joint Color and Texture Descriptions. In: 2010 Fourth International Conference on Genetic and Evolutionary Computing (ICGEC), pp. 622–625 (2010), doi:10.1109/ICGEC.2010.159Google Scholar
  12. 12.
    Azab, M.M., Shedeed, H.A., Hussein, A.S.: A new technique for background modeling and subtraction for motion detection in real-time videos. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 3453–3456 (2010), doi:10.1109/ICIP.2010.5653748Google Scholar
  13. 13.
    Gao, D., Jiang, Z., Ye, M.: A New Approach of Dynamic Background Modeling for Surveillance Information. In: 2008 International Conference on Computer Science and Software Engineering, vol. 1, pp. 850–855 (2008), doi:10.1109/CSSE.2008.601Google Scholar
  14. 14.
    Mendizabal, A., Salgado, L.: A region based approach to background modeling in a wavelet multi-resolution framework. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 929–932 (2011), doi:10.1109/ICASSP.2011Google Scholar
  15. 15.
    Wang, W., Yang, J., Gao, W.: Modeling Background and Segmenting Moving Objects from Compressed Video. IEEE Transactions on Circuits and Systems for Video Technology 18(5), 670–681 (2008), doi:10.1109/TCSVT.2008.918800CrossRefGoogle Scholar
  16. 16.
    Luo, X., Bhandarkar, S.M., Hua, W., Gu, H.: Nonparametric Background Modeling Using the CONDENSATION Algorithm. In: IEEE International Conference on Video and Signal Based Surveillance, AVSS 2006, p. 3 (2006), doi:10.1109/AVSS.2006.81Google Scholar
  17. 17.
    Vemulapalli, R., Aravind, R.: Spatio-temporal nonparametric background modeling and subtraction. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1145–1152 (2009), doi:10.1109/ICCVW.2009.5457574Google Scholar
  18. 18.
    Wang, H., Ren, M.-W., Yang, J.-Y.: Background Modeling Method Based on Sequential Kernel Density Approximation. In: Chinese Conference on Pattern Recognition, CCPR 2008, pp. 1–6 (2008), doi:10.1109/CCPR.2008.44Google Scholar
  19. 19.
    Ma, J., Li, S.: Moving Target Detection Based on Background Modeling by Multi-level Median Filter. In: The Sixth World Congress on Intelligent Control and Automation, WCICA 2006, vol. 2, pp. 9974–9978 (2006), doi:10.1109/WCICA.2006.1713948Google Scholar
  20. 20.
    Xu, S.: Dynamic Background Modeling for Foreground Segmentation. In: Eighth IEEE/ACIS International Conference on Computer and Information Science, ICIS 2009, pp. 599–604 (2009), doi:10.1109/ICIS.2009.102Google Scholar
  21. 21.
    Li, L., Huang, W., Gu, I.Y.-H., Tian, Q.: Statistical modeling of complex backgrounds for foreground object detection. IEEE Transactions on Image Processing 13(11), 1459–1472 (2004), doi:10.1109/TIP.2004.836169CrossRefGoogle Scholar
  22. 22.
    Yu, J., Zhou, X., Qian, F.: Object kinematic model: A novel approach of adaptive background mixture models for video segmentation. In: 2010 8th World Congress Intelligent Control and Automation (WCICA), pp. 6225–6228 (2010), doi:10.1109/WCICA.2010.5554402Google Scholar
  23. 23.
    Zhang, L., Liang, Y.: Motion Human Detection Based on Background Subtraction. In: 2010 Second International Workshop Education Technology and Computer Science (ETCS), vol. 1, pp. 284–287 (2010), doi:10.1109/ETCS.2010.440Google Scholar
  24. 24.
    Hedayati, M., Zaki, W.M.D.W., Hussain, A.: Real-time background subtraction for video surveillance: From research to reality. In: 2010 6th International Colloquium Signal Processing and Its Applications (CSPA), pp. 1–6 (2010), doi:10.1109/CSPA.2010.5545277Google Scholar
  25. 25.
    Li, X., Jing, X.: FPGA based mixture Gaussian background modeling and motion detection. In: 2011 Seventh International Conference on Natural Computation (ICNC), vol. 4, pp. 2078–2081 (2011), doi:10.1109/ICNC.2011.6022578Google Scholar
  26. 26.
    Cheng, F.-C., Huang, S.-C., Ruan, S.-J.: Illumination-Sensitive Background Modeling Approach for Accurate Moving Object Detection. IEEE Transactions on Broadcasting 57(4), 794–801 (2011), doi:10.1109/TBC.2011.2160106CrossRefGoogle Scholar
  27. 27.
    Caseiro, R., Henriques, J.F., Batista, J.: Foreground Segmentation via Background Modeling on Riemannian Manifolds. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 3570–3574 (2010), doi:10.1109/ICPR.2010.871Google Scholar
  28. 28.
    Charoenpong, T., Supasuteekul, A., Nuthong, C.: Adaptive background modeling from an image sequence by using K-Means clustering. In: 2010 International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), pp. 880–883 (2010)Google Scholar
  29. 29.
    El Baf, F., Bouwmans, T., Vachon, B.: Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009, pp. 60–65 (2009), doi:10.1109/CVPRW.2009.5204109Google Scholar
  30. 30.
    Doulamis, A., Kalisperakis, I., Stentoumis, C., Matsatsinis, N.: Self Adaptive background modeling for identifying persons’ falls. In: 5th International Workshop on Semantic Media Adaptation and Personalization (SMAP), pp. 57–63 (2010), doi:10.1109/SMAP.2010.5706861Google Scholar
  31. 31.
    Kan, J., Li, K., Tang, J., Du, X.: Background modeling method based on improved multi-Gaussian distribution. In: International Conference on Computer Application and System Modeling (ICCASM), vol. 2, pp. 214–218 (2010), doi:10.1109/ICCASM.2010.5619314Google Scholar
  32. 32.
    Suo, P., Wang, Y.: An improved adaptive background modeling algorithm based on Gaussian Mixture Model. In: 9th International Conference on Signal Processing (ICSP), pp. 1436–1439 (2008), doi:10.1109/ICOSP.2008.4697402Google Scholar
  33. 33.
    Haq, A.-U., Gondal, I., Murshed, M.: Automated multi-sensor color video fusion for nighttime video surveillance. In: IEEE Symposium on Computers and Communications (ISCC), pp. 529–534 (2010), doi:10.1109/ISCC.2010.5546791Google Scholar
  34. 34.
    Djouadi, A., Snorrason, O., Garber, F.: The quality of training-sample estimates of Bhattacharyya coefficient. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(1), 92–97 (1990)CrossRefGoogle Scholar
  35. 35.
    Lin, J.: Divergence Measures Based on the Shannon Entropy. IEEE Transactions on Information Theory 37(i) (1991)Google Scholar
  36. 36.
    Charoenpong, T., Supasuteekul, A., Nuthong, C.: Adaptive background modeling from an image sequence by using K-Means clustering. In: International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), pp. 880–883 (2010)Google Scholar
  37. 37.
    Prati, A., Mikic, I., Trivedi, M., Cucchiara, R.: Detecting Moving Shadows: Formulation, Algorithms and Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(7), 918–923 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Farou Brahim
    • 1
    • 2
  • Seridi Hamid
    • 2
  • Akdag Herman
    • 3
  1. 1.Computer Science DepartmentBadji Mokhtar UniversityAnnabaAlgeria
  2. 2.LabSTICGuelma UniversityGuelmaAlgeria
  3. 3.LIASDParis 8 UniversitySaint-DenisFrance

Personalised recommendations