Synchronization Policies Impact in Distributed Agent-Based Simulation

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 217)

Abstract

When agents and interactions grow in a situated agent-based simulations, requirements in memory or computation power increase also. To be able to tackle simulation with millions of agents, distributing the simulator on a computer network is promising but raises issues related to time consistency and synchronization between machines. This paper study the cost in performances of several synchronization policies and their impact on macroscopic properties of simulations. To that aims, we study three different time management mechanisms and evaluate them on two multi-agent applications.

Keywords

Distributed simulations large scale multi-agent system situated agentbased simulations synchronization policies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo, C.: A framework for distributing agent-based simulations. In: Alexander, M., et al. (eds.) Euro-Par 2011, Part I. LNCS, vol. 7155, pp. 460–470. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Fujimoto, R.M.: Parallel and distributed simulation systems. Wiley (2000)Google Scholar
  3. 3.
    Gold, T.: Why time flows: The physics of past & future. Daedalus 132(2), 37–40 (2003)MathSciNetGoogle Scholar
  4. 4.
    Gupta, B., Rahimi, S., Yang, Y.: A novel roll-back mechanism for performance enhancement of asynchronous checkpointing and recovery. Informatica 31, 1–13 (2007)MATHGoogle Scholar
  5. 5.
    Jefferson, D.R.: Virtual time. ACM Trans. Program. Lang. Syst. 7, 404–425 (1985)CrossRefGoogle Scholar
  6. 6.
    Karmakharm, T., Richmond, P., Romano, D.: Agent-based large scale simulation of pedestrians with adaptive realistic navigation vector fields. In: Theory and Practice of Computer Graphics, pp. 67–74 (2010)Google Scholar
  7. 7.
    Lamport, L.: Ti clocks, and the ordering of events in a distributed system. Commun. ACM 21, 558–565 (1978)CrossRefMATHGoogle Scholar
  8. 8.
    Logan, B., Theodoropoulos, G.: The distributed simulation of multiagent systems. Proceedings of the IEEE 89(2), 174–185 (2001)CrossRefGoogle Scholar
  9. 9.
    Minson, R., Theodoropoulos, G.K.: Distributing repast agent-based simulations with hla. In: Euro. Simulation Interoperability Workshop, pp. 04–046 (2004)Google Scholar
  10. 10.
    Reynolds, C.: Steering behaviors for autonomous characters (1999)Google Scholar
  11. 11.
    Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Prentice-Hall (1996)Google Scholar
  12. 12.
    Scerri, D., Drogoul, A., Hickmott, S., Padgham, L.: An architecture for modular distributed simulation with agent-based models. In: AAMAS 2010 Proceedings, pp. 541–548 (2010)Google Scholar
  13. 13.
    Šišlák, D., Volf, P., Jakob, M., Pěchouček, M.: Distributed platform for large-scale agent-based simulations. In: Dignum, F., Bradshaw, J., Silverman, B., van Doesburg, W. (eds.) Agents for Games and Simulations. LNCS (LNAI), vol. 5920, pp. 16–32. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Wilensky, U.: Netlogo wolf-sheep predation model (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.LIFL (CNRS UMR 8022)Université Lille 1LilleFrance

Personalised recommendations