A MAS for Teaching Computational Logic

  • Jose Alberto Maestro-Prieto
  • Ma Aránzazu Simón-Hurtado
  • Juan F. de-Paz-Santana
  • Gabriel Villarrubia-González
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 217)

Abstract

In this paper, an Intelligent Tutoring System (ITS) for teaching computational logic called SIAL is described. Several basic topics in computational logic are covered. The more complex part in SIAL is the module in charge of the diagnosis, which performs model-based diagnosis although sometimes, a knowledge-based (expertise) model is necessary in order to yield a more accurate diagnosis. The inherent complexity of the ITS is approached using a Multi-Agent System (MAS). The classical approach in ITS, which divides them into four independent modules, is adapted to a MAS creating an agent for each module and other agent for any other subsystem needed. The results obtained from an experiment of usage of SIAL are presented.

Keywords

Multi-Agent Systems Intelligent Tutoring Systems Computational Logic Model Based Diagnosis Knowledge Based Diagnosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bundy, A., Moore, J.D., Zinn, C.: An Intelligent Tutoring System for Induction Proofs. In: Melis, E., Scott, D., et al. (eds.) CADE-17 Workshop on Automated Deduction in Education, pp. 4–13 (2000)Google Scholar
  2. 2.
    Sutcliffe, G.: The CADE-23 Automated Theorem Proving System Competition - CASC-23. AI Communications 25, 49–63 (2012)Google Scholar
  3. 3.
    Aspinall, D., Lüth, C., Winterstein, D.: A Framework for Interactive Proof. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 161–175. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Barker-Plummer, D., Etchemendy, J., Liu, A., Murray, M., Swoboda, N.: Openproof - A Flexible Framework for Heterogeneous Reasoning. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 347–349. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Aitken, J.: Problem Solving in Interactive Proof: A Knowledge-Modelling Approach. In: Wahlster, W. (ed.) Proceedings of the 12th European Conference on Artificial Intelligence, pp. 335–339. John Wiley & Sons, Budapest (1996)Google Scholar
  6. 6.
    Driscoll, M.P.: Psychological foundations of instructional design. In: Trends and Issues in Instructional Design and Technology, 2nd edn., pp. 36–44. Pearson Education, Inc., Upper Saddle River (2007)Google Scholar
  7. 7.
    Jennings, N.R., Wooldridge, M.: Agent-Oriented Software Engineering. In: Bradshaw, J. (ed.). AAAI/MIT Press (2000)Google Scholar
  8. 8.
    Rodríguez, S., Pérez-Lancho, B., de Paz, J., Bajo, J., Corchado, J.: Ovamah: Multiagent-based Adaptive Virtual Organizations. In: Proceedings of the 12th International Conference on Information Fusion, Seattle, USA, pp. 990–997 (2009)Google Scholar
  9. 9.
    Cheikes, B.: GIA: An agent-based architecture for Intelligent Tutoring Systems. In: Proceedings of the CIKM 1995 Workshop on Intelligent Information Agents (1995)Google Scholar
  10. 10.
    Capuano, N., Marsella, M., Salerno, S.: ABITS: An Agent Based Intelligent Tutoring System for Distance Learning. In: Proceedings of the International Workshop in Adaptative and Intelligent Web-based Educational Systems, pp. 17–28 (2000)Google Scholar
  11. 11.
    Hospers, M., Kroezen, E., Nijholt, A., op den Akker, R.: Developing a generic agent-based intelligent tutoring system. In: Devedzic, V., Spector, M., Sampson, D., Kinshuk, M. (eds.) The 3rd IEEE International Conference on Advanced Learning Technologies. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  12. 12.
    Fernández-Caballero, A., Gascueña, J., Botella, F., Lazcorreta, E.: Distance learning by intelligent tutoring system. Part I: Agent-based architecture for user-centred adaptivity. In: Proceedings of the 7th International Conference on Enterprise Information Systems, pp. 75–82 (2005)Google Scholar
  13. 13.
    González, C., Burguillo, J., Vidal, J.C., Llamas, M., Rodríguez, D.: ITS-TB: An Intelligent Tutoring System to provide e-Learning in Public Health. In: Proceedings of the 16th EAEEIE Annual Conference on Innovation in Education for Electrical and Information Engineering, EIE (2005)Google Scholar
  14. 14.
    Association for Computing Machinery (ACM): Computer Science Curriculum 2008: An Interim Revision of the CS 2001 (2008)Google Scholar
  15. 15.
    Mayer, R.E., Moreno, R.: Nine Ways to Reduce Cognitive Load in Multimedia Learning. Educational Psychologist 38, 43–52 (2003)CrossRefGoogle Scholar
  16. 16.
    Clark, R., Mayer, R.: e-Learning and the Science of Instruction: Proven Guidelines for Consumers and Designers of Multimedia Learning, 3rd edn. Pfeiffer (2011)Google Scholar
  17. 17.
    Mondshein, L., Sattar, A., Lorenzen, T.: Visualizing prolog: a “jigsaw puzzle” approach. ACM Inroads 1, 43–48 (2010)CrossRefGoogle Scholar
  18. 18.
    Stenning, K., Cox, R., Oberlander, J.: Contrasting the Cognitive Effects of Graphical and Sentential Logic Teaching: Reasoning, Representation and Individual Differences. Language and Cognitive Processes 3, 333–354 (1995)CrossRefGoogle Scholar
  19. 19.
    Croy, M.J.: Graphic Interface Design and Deductive Proof Construction. Journal of Computers in Mathematics and Science Teaching 18, 371–385 (1999)Google Scholar
  20. 20.
    Endriss, U.: The interactive learning environment winke for teaching deductive reasoning. In: Manzano, M. (ed.) Proceedings of the 1st International Congress on Tools for Teaching Logic. University of Salamanca (2000) (invited talk abstract)Google Scholar
  21. 21.
    Hatzilygeroudis, I., Giannoulis, C., Koutsojannis, C.: A Web-Based Education System for Predicate Logic. In: Proceedings of the IEEE International Conference on Advanced Learning Technologies, pp. 106–110. IEEE Computer Society, Washington, DC (2004)Google Scholar
  22. 22.
    Mitrovic, A., Martin, B., Suraweera, P.: Intelligent tutors for all: The constraint-based approach. IEEE Intelligent Systems 22, 38–45 (2007)CrossRefGoogle Scholar
  23. 23.
    Ferrero, B., Fernández-Castro, I., Urretavizcaya, M.: Multiple Paradigms for a Generic Diagnostic Proposal. In: Gauthier, G., VanLehn, K., Frasson, C. (eds.) ITS 2000. LNCS, vol. 1839, p. 653. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Finin, T., Weber, J., Wiederhold, G., Genesereth, M., Fritzson, R., McGuire, J., Pelavin, R., Shapiro, S., Beck, C.: Specification of the KQML Agent-Communication Language. Technical Report, DARPA, DRAFT (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Jose Alberto Maestro-Prieto
    • 1
  • Ma Aránzazu Simón-Hurtado
    • 1
  • Juan F. de-Paz-Santana
    • 2
  • Gabriel Villarrubia-González
    • 2
  1. 1.Dept. de InformáticaUniversidad de ValladolidValladolidSpain
  2. 2.Dept. de Informática y AutomáticaUniversidad de SalamancaSalamancaSpain

Personalised recommendations