A Model to Visualize Information in a Complex Streets’ Network

  • Taras Agryzkov
  • José L. Oliver
  • Leandro Tortosa
  • José F. Vicent
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 217)

Abstract

This paper discusses a process to graphically view and analyze information obtained from a network of urban streets, using an algorithm that establishes a ranking of importance of the nodes of the network itself. The basis of this process is to quantify the network information obtained by assigning numerical values to each node, representing numerically the information. These values are used to construct a data matrix that allows us to apply a classification algorithm of nodes in a network in order of importance. From this numerical ranking of the nodes, the process finish with the graphical visualization of the network. An example is shown to illustrate the whole process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afryzkov, T., Oliver, J.L., Tortosa, L., Vicent, J.: An algorithm for ranking the nodes of an urban network based on concept of PageRank vector. Applied Mathematics and Computation (219), 2186–2193 (2012)Google Scholar
  2. 2.
    Barabasi, A.L.: Emergence of Scaling in Random Networks Science, pp. 286–509 (1999)Google Scholar
  3. 3.
    Barabasi, A.L.: Statistical Mechanics of Complex Networks. Review of Modern Physics 74, 47 (2002)Google Scholar
  4. 4.
    Barthelemy, M.: Spatial Networks. Physics Reports 499, 1–101 (2011)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Batty, M.: Cities and Complexity. Understanding Cities with Cellular Automata, Agent Based Models, and Fractals. The MIT Press, Cambridge (2005)Google Scholar
  6. 6.
    Berkhin, P.: A survey on PageRank computing. Internet Mathematics 2(1), 73–120 (2005)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Crucitti, P., Latora, V., Porta, S.: Centrality measures in spatial networks of urban streets. Physical Review E 73, 036125 (2006)Google Scholar
  8. 8.
    Crucitti, P., Latora, V., Porta, S.: The network analysis of urban streets: a dual approach. Physica A: Statistical Mechanics and its Applications 369(2), 853–866 (2006)CrossRefGoogle Scholar
  9. 9.
    Crucitti, P., Latora, V., Porta, S.: The network analysis of urban streets: a dual approach. Physica A: Statistical Mechanics and its Applications 369(2), 853–866 (2006)CrossRefGoogle Scholar
  10. 10.
    Jeong, S.K., Ban, Y.U.: Computational algorithms to evaluate design solutions using Space Syntax. Computer-Aided Design 43(6), 664–676 (2011)CrossRefGoogle Scholar
  11. 11.
    Jiang, B.: A topological pattern of urban street networks: Universality and peculiarity. Physica A Statistical Mechanics and its Applications 384, 647–655 (2007)CrossRefGoogle Scholar
  12. 12.
    Kansky, K., Danscoine, P.: Measures of network structure. Flux 5(1), 89–121 (1989)CrossRefGoogle Scholar
  13. 13.
    Lammer, S., Gehlsen, B., Helbing, D.: Scaling laws in the spatial structure of urban road networks. Physica A Statistical Mechanics and its Applications 363, 89–95 (2006)CrossRefGoogle Scholar
  14. 14.
    Langville, A.N., Mayer, C.D.: Deeper inside PageRank. Internet Mathematics 1(3), 335–380 (2005)CrossRefGoogle Scholar
  15. 15.
    Masucci, A.P., Smith, D., Crooks, A., Batty, M.: Random planar graphs and the London street network. European Physical Journal B 71, 259–271 (2009)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Noh, J.D., Rieger, H.: Random walks on complex networks. Physical Review Letters 92, 118701-1–118701-4 (2004)Google Scholar
  17. 17.
    Page, L., Brin, S., Motwani, R., Winogrand, T.: The pagerank citation ranking: Bringing order to the web. Technical report 1999-66, Stanford InfoLab (1999)Google Scholar
  18. 18.
    Strano, E., Nicosia, V., Latora, V., Porta, S., Barthelemy, M.: Elementary processes governing the evolution of road networks. Scientific Reports 2, 296 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Taras Agryzkov
    • 1
  • José L. Oliver
    • 2
  • Leandro Tortosa
    • 1
  • José F. Vicent
    • 1
  1. 1.Departamento de Ciencia de la Computación e Inteligencia ArtificialUniversidad de AlicanteAlicanteSpain
  2. 2.Departamento de Expresión Grafica y CartografiaUniversidad de AlicanteAlicanteSpain

Personalised recommendations