Yield Criteria for Incompressible Materials in the Shear Stress Space

  • Vladimir A. Kolupaev
  • Alexandre Bolchoun
  • Holm Altenbach
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 41)

Abstract

In the theory of plasticity different yield criteria for incompressible material behavior are used. The criteria of Tresca, von Mises and Schmidt-Ishlinsky are well known and the first two are presented in the textbooks of Strength of Materials. Both Tresca and Schmidt-Ishlinsky criteria have a hexagonal symmetry and the criterion of von Mises has a rotational symmetry in the \(\uppi \)-plane. These criteria do not distinguish between tension and compression (no strength differential effect), but numerous problems are treated in the engineering practice using these criteria. In this paper the yield criteria with hexagonal symmetry for incompressible material behavior are compared. For this purpose, their geometries in the \(\uppi \)-plane will be presented in polar coordinates. The radii at the angles of \(15^\circ \) and \(30^\circ \) will be related to the radius at \(0^\circ \). Based on these two relations, these and other known criteria will be shown in one diagram. In this diagram the extreme shapes of the yield surfaces are restricted by two criteria: the Unified Yield Criterion (UYC) and the Multiplicative Ansatz Criterion (MAC). The models with hexagonal symmetry in the \(\uppi \)-plane for incompressible materials can be formulated in the shear stress space. For this formulation platonic, archimedean and catalan solids with orthogonal symmetry planes are used. The geometrical relations of such models in the \(\uppi \)-plane will be depicted in the above mentioned diagram. The examination of the yield surfaces leads to the generalized criterion with two parameters. This model describes all possible convex forms with hexagonal symmetry. The proposed way to look at the yield criteria simplifies the selection of a proper criterion. The extreme solutions for the analysis of structural members can be found using these criteria.

Keywords

Flow criteria Equivalent stress Deviatoric plane Hexagonal symmetry Generalization 

Notes

Acknowledgments

The first author was supported by the Deutsche Forschungsgemeinschaft (DFG) reference KO 3382/6-1.

References

  1. 1.
    Adam, P., Wyss, A.: Platonische und archimedische Körper, ihre sternformen und polaren gebilde. Haupt Verlag, Bern (1994)MATHGoogle Scholar
  2. 2.
    Altenbach, H., Altenbach, J., Zolochevsky, A.: Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Deutscher Verlag für Grundstoffindustrie, Stuttgart (1995)Google Scholar
  3. 3.
    Annin, B.D.: Theory of ideal plasticity with a singular yield surface. J. Appl. Mech. Tech. Phys. 40(2), 347–353 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Belyaev, N.M.: Strength of Materials. Mir Publishers, Moscow (1979)Google Scholar
  5. 5.
    Billington, E.W.: Introduction to the Mechanics and Physics of Solids. Adam Hilger Ltd, Bristol (1986)MATHGoogle Scholar
  6. 6.
    Bolchoun, A., Kolupaev, V.A., Altenbach, H.: Convex and non-convex flow surfaces (in German: Konvexe und nichtkonvexe Fließflächen). Forsch Ingenieurwes 75(2), 73–92 (2011)CrossRefGoogle Scholar
  7. 7.
    Burzyński, W.: Studjum nad hipotezami wytężenia. Akademia Nauk Technicznych, Lwów (1928)Google Scholar
  8. 8.
    Chen, W.F., Zhang, H.: Structural Plasticity - Theory, Problems, and CAE Software. Springer, New York (1991)CrossRefGoogle Scholar
  9. 9.
    Cromwell, P.R.: Polyhedra. Cambridge University Press, New York (1999)Google Scholar
  10. 10.
    Davis, E.A.: The Bailey flow rule and associated yield surface. J. Appl. Mech. 28(2), 310 (1961)CrossRefGoogle Scholar
  11. 11.
    Hershey, A.V.: The plasticity of an isotropic aggregate of anisotropic face-centered cubic crytals. J. Appl. Mech. Trans. ASME 21(3), 241–249 (1954)MATHGoogle Scholar
  12. 12.
    Hill, R.: On the inhomogeneous deformation of a plastic lamina in a compression test. Phil. Mag. Series 7 41(319), 733–744 (1950)Google Scholar
  13. 13.
    Hosford, W.F.: A generalized isotropic yield criterion. J. Appl. Mech. Trans. ASME 39(June), 607–609 (1972)CrossRefGoogle Scholar
  14. 14.
    Hosford, W.F.: On yield loci of anisotropic cubic metals. In: Proceeding of the 7th North American Metalworking Research (NAMRC), vol. 7, pp. 191–196. SME, Dearborn (1979)Google Scholar
  15. 15.
    Ishlinsky, A.Y.: Hypothesis of strength of shape change (in Russ.: Gipoteza prochnosti formoizmenenija). Uchebnye Zapiski Moskovskogo Universiteta, Mekhanika 46, 104–114 (1940)Google Scholar
  16. 16.
    Ishlinsky, A.Y., Ivlev, D.D.: Mathematical Theory of Plasticity (in Russ.: Matematicheskaja teorija plastichnosti). Fizmatlit, Moscow (2003)Google Scholar
  17. 17.
    Ivlev, D.D.: On extremal properties of the yield criteria (in Russ.: Ob ekstremal’nych svojstvach uslovij plastichnosti). J. Appl. Math. Mech. 5, 951–955 (1960)Google Scholar
  18. 18.
    Ivlev, D.D.: Theory of Ideal Plasticity (in Russ.: Teorija idealnoj plastichnosti). Nauka, Moscow (1966)Google Scholar
  19. 19.
    Kolosov, G.V.: On the surfaces showing the distribution of the shear stresses in a point of a continuous deformable body (in Russ.: O poverkhnostjach demonstrirujushhikh raspredelenije srezyvajushhikh usilij v tochke sploshnogo deformiruemogo tela). Prikladnya Matematika i Mekhanika 1(1), 125–126 (1933)Google Scholar
  20. 20.
    Kolupaev, V.A.: 3D-Creep behaviour of parts made of non-reinforced thermoplastics (in German: Dreidimensionales Kriechverhalten von Bauteilen aus unverstärkten Thermoplasten). PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle (2006)Google Scholar
  21. 21.
    Kolupaev, V.A., Altenbach, H.: Application of the generalized model of Mao-Hong Yu to plastics (in German: Anwendung der Unified Strength Theory (UST) von Mao-Hong Yu auf unverstärkte Kunststoffe. In: Grellmann, W. (ed.) Tagung Deformations- und Bruchverhalten von Kunststoffen, vol 12, pp. 320–339. Martin-Luther-Universität Halle-Wittenberg, Merseburg (2009)Google Scholar
  22. 22.
    Kolupaev, V.A., Altenbach, H.: Considerations on the Unified Strength Theory due to Mao-Hong Yu (in German: Einige Überlegungen zur Unified Strength Theory von Mao-Hong Yu). Forsch Ingenieurwes 74(3), 135–166 (2010)CrossRefGoogle Scholar
  23. 23.
    Kolupaev, V.A., Bolchoun, A., Altenbach, H.: New trends in application of strength hypotheses (in German: Aktuelle Trends beim Einsatz von Festigkeitshypothesen). Konstruktion, 59–66 (2009)Google Scholar
  24. 24.
    Lüpfert, H.P.: Schubspannungs-Interpretationen der Festigkeitshypothese von Huber \(/\) v. Mises \(/\) Hencky und ihr Zusammenhang. Technnische Mechanik 12(4), 213–217 (1991)Google Scholar
  25. 25.
    Mendelson, A.: Plasticity: Theory and Application. Krieger, Malabar (1968)Google Scholar
  26. 26.
    Mises, R.V.: Mechanik des festen Körpers im plastischen deformablen Zustand. Nachrichten der Königlichen Gesellschaft der Wissenschaften Göttingen, Mathematisch-physikalische Klasse, pp. 589–592 (1913)Google Scholar
  27. 27.
    Novozhilov, V.: On the principles of the statical analysis of the experimental results for isotropic materials (in Russ.: O prinzipakh obrabotki rezultatov staticheskikh ispytanij izotropnykh materialov). Prikladnaja Matematika i Mechanika XV(6), 709–722 (1951)Google Scholar
  28. 28.
    Ottosen, N.S., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier Science, London (2005)Google Scholar
  29. 29.
    Paul, B.: Macroscopic plastic flow and brittle fracture. In: Liebowitz, H. (ed.) Fracture: an advanced treatise, vol. II, pp. 313–496. Academic Press, New York (1968)Google Scholar
  30. 30.
    Pisarenko, G.S., Lebedev, A.A.: Deformation and Strength of Materials under Complex Stress State (in Russ.: Deformirovanie i prochnost’ materialov pri slozhnom naprjazhennom sostojanii). Naukowa Dumka, Kiev (1976)Google Scholar
  31. 31.
    Prager, W., Hodge, P.: Theorie ideal plastischer Körper. Springer, Wien (1954)MATHCrossRefGoogle Scholar
  32. 32.
    Reuss, A.: Vereinfachte Beschreibung der plastischen Formänderungsgeschwindigkeiten bei Voraussetzung der Schubspannungsfließbedingung. Zeitschrift für Angewandte Mathematik und Mechanik 13(5), 356–360 (1933)MATHCrossRefGoogle Scholar
  33. 33.
    Schmidt, R.: Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet. Ing Arch 3(3), 215–235 (1932)MATHCrossRefGoogle Scholar
  34. 34.
    Shesterikov, S.A.: On the theory of ideal plastic solid (in Russ.: K postroeniju teorii ideal’no plastichnogo tela). Prikladnaja matematika i mechanika, Rossijskaja Akademija Nauk 24(3), 412–415 (1960)Google Scholar
  35. 35.
    Sokolovsky, V.V.: Theory of Plasticity (in Russ. and English: Teorija plastichnosti). Izdatelstvo Akademii Nauk SSSR, Moscow (1946)Google Scholar
  36. 36.
    Szczepiński, W., Szlagowski, J.: Plastic Design of Complex Shape Structures. Ellis Horwood Limited and PWN-Polish Scientific Publishers, Chichester, Warszawa (1990)Google Scholar
  37. 37.
    Tresca, H.: Mémoire sur l’ecoulement des corps solides. Mémoires pres par div sav 18, 75–135 (1868)Google Scholar
  38. 38.
    Walczak, J.: Nowoczesna miara wytężenia materiału. Archiwum mechaniki stosowanej III, 5–26 (1951)Google Scholar
  39. 39.
    Wolfram, S.: The Mathematica Book: the Definitive Best-Selling Presentation of Mathematica by the Creator of the System. Wolfram Media, Champaign (2003)Google Scholar
  40. 40.
    Yu, M.H.: General behaviour of isotropic yield function (in Chinese). Scientific and technological research paper of Xi’an Jiaotong University, pp. 1–11 (1961)Google Scholar
  41. 41.
    Yu, M.H.: Twin shear stress yield criterion. Int J Mech Sci 25(1), 71–74 (1983a)CrossRefGoogle Scholar
  42. 42.
    Yu, M.H.: Twin shear stress yield criterion. Int J Mech Sci 25(11), 845–846 (1983b)CrossRefGoogle Scholar
  43. 43.
    Yu, M.H.: Engineering Strength Theory (in Chinese). Higher Education Press, Beijing (1999)Google Scholar
  44. 44.
    Yu, M.H.: Unified Strength Theory and its Applications. Springer, Berlin (2004)MATHCrossRefGoogle Scholar
  45. 45.
    Yu, M.H.: Linear and non-linear unified strength theory (in Chinese). J Geotech Eng 26(4), 662–669 (2007)Google Scholar
  46. 46.
    Yu, M.H., Xia, G., Kolupaev, V.A.: Basic characteristics and development of yield criteria for geomaterials. J Rock Mech and Geotech Eng 1(1), 71–88 (2009)Google Scholar
  47. 47.
    Zhou, X.P., Zhang, Y.X., Wang, L.H.: A new nonlinear yieid criterion. J of Shanghai Jiaotong University (Science) E-9(1), 31–33 (2004)Google Scholar
  48. 48.
    Źyczkowski, M.: Combined Loadings in the Theory of Plasticity. PWN-Polish Scientific Publishers, Warszawa (1981)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Vladimir A. Kolupaev
    • 1
  • Alexandre Bolchoun
    • 2
  • Holm Altenbach
    • 3
  1. 1.Mechanik und SimueationDeutsches Kunststoff-Institut (DKI)DarmstadtGermany
  2. 2.KC Bauteilgebundenes WerkstoffverhaltenFraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBFDarmstadtGermany
  3. 3.Lehrstuhl für Technische MechanikInstitut für Mechanik Fakultät für Maschinenbau Otto-von-Guericke-Universtät MagdeburgMagdeburgGermany

Personalised recommendations