Optimization of the Design of a Four Bar Mechanism for a Lower Limb Prosthesis Using the Taboo Search Algorithm

  • Juan José Muñoz-César
  • Luis Héctor Hernández-GómezEmail author
  • Omar Ismael López-Suárez
  • Guillermo Urriolagoitia-Sosa
  • Juan Alfonso Beltrán-Fernández
  • Guillermo Urriolagoitia-Calderón
  • Nefi David Pava-Chipol
  • Ivan José Quintero-Gómez
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 40)


In this chapter, the optimization of the design of a four bar mechanism used in polycentric prosthesis with voluntary control is reported. This prosthesis has been used by a male, whose left leg was amputated above the knee. He is 34 years old, weighs 78 kg and is 1.75 m tall. One of the objectives of this optimization was to fulfill the requirements of his anthropometric characteristics. The taboo search algorithm was used for this purpose. In this case, the lengths of the links were determined, following an inverse analysis. The objective function was the minimization of the error between the target trajectory of the instantaneous center of rotation (ICR) and the path followed by ICR of the four bar mechanism. This curve is very important because it is related with the kinematic and the forces that are developed in the gait cycle. Therefore, it is expected that the amputee individual develop a natural gait cycle with this prosthesis. In the final stage, 1,900 iterations were carried out and the lengths of the bars were augmented by 0.01 mm. The lengths of the links of the optimized mechanism are the following: Bar 1 = 43 mm; Bar 2 = 55.5 mm; Bar 3 = 59 mm and Bar 4 = 29 mm. With this information, the prosthesis was manufactured and adapted to the patient.


Inverse analysis orthopedics instantaneous center of rotation knee prosthesis voluntary control 



The authors kindly acknowledge the support given to the National Polytechnic Institute, the Institute of Science and Technology of the Federal District and the support given by the Hospital 1º de Octubre of ISSSTE.


  1. 1.
    Gunston, FH.: Polycentric knee arthroplasty. Prosthetic simulation of normal knee movement. J. Bone Joint Surg. Br. 53-B, 272–277 (1971)Google Scholar
  2. 2.
    Radcliffe, C.W.: The Knud Jansen lecture: above-knee prosthetics. Prosthet. Orthot. Int. 1, 146–160 (1977)Google Scholar
  3. 3.
    Hobson, D.A., Torfason, L.E.: Optimization of four-bar knee mechanisms—A computerized approach. J. Biomech. 7(4), 371–376 (1974)CrossRefGoogle Scholar
  4. 4.
    Hobson, D.A., Torfason, L.E.: Computer optimization of polycentric prosthetic knee mechanisms. Bull. Prosthet. Res. BRP10, 187–201 (1975)Google Scholar
  5. 5.
    Glover, F.: Tabu search–part I. ORSA J. Comput. 1(3), 190–206 (1989)CrossRefzbMATHGoogle Scholar
  6. 6.
    Glover, F.: Tabu search –part II. ORSA J. Comput. 2(1), 4–32 (1990)CrossRefzbMATHGoogle Scholar
  7. 7.
    Arora, J.S., Elwakeil, O.A., Chahande, A.I., Hsieh, C.C.: Global optimization methods for engineering applications: a review. Struct. Optim. 9(3–4), 137–159 (1995)CrossRefGoogle Scholar
  8. 8.
    Khorshidi, M., Soheilypour. M., Peyro. M., Atai. A., Shariat Panahi, M : Optimal design of four-bar mechanisms using a hybrid multi-objective GA with adaptive local search. Mech. Mach. Theory 46(10), 1453–1465 (2011)Google Scholar
  9. 9.
    Smaili, A.A., Diab, N.A., Atallah, N.A.: Optimum synthesis of mechanisms using tabu-gradient search algorithm. J. Mech. Des. 127(5), 917–923 (2004)CrossRefGoogle Scholar
  10. 10.
    Radcliffe, C.W.: Four-bar linkage knee mechanism: kinematics, alignment and prescription criteria. Prosthet. Orthot. Int. 18, 159–173 (1994)Google Scholar
  11. 11.
    Radcliffe, C.W.: Prosthetic-knee mechanism for above knee amputees In: Murdoch, G. (ed.) Prosthetic and Orthotic Practice, pp. 225–249. Editor Edward Arnold, LTA London, (1970)Google Scholar
  12. 12.
    Radcliffe, C.W.: Biomechanics of knee stability control with four-bar prosthetic knees. ISPO Australia Annual Meeting, Melbourne (2003)Google Scholar
  13. 13.
    Beltrán-Fernández, J.A., Hernández-Gómez, L.H., Urriolagoitia-Calderón, G., González-Rebatú, A., Urriolagoitia-Sosa, G., Galán-Vera, M.M., Escalante-Rodríguez, E.: Assessment of the structural integrity of C3-C5 cervical porcine vertebrae model based on 2D classic CAD, 3D scanner and 3D computed tomography. In: Ochsner, A., da Silva, L.F.M., Altenbach, H. (eds.) Analysis and Design of Biological Materials and Structures. Advanced Structured Materials, vol. 14, pp. 3–17. Springer, Berlin Heidelberg, (2012)Google Scholar
  14. 14.
    Lugo-González, E., Merchán-Cruz, E.A., Hernández-Gómez, L.H.: Synthesis optimization of planar mechanisms. Appl. Mech. Mater. 15, 55–60 (2009)CrossRefGoogle Scholar
  15. 15.
    Rodríguez-Martínez, R., Urriolagoitia-Sosa, G., Torres-San Miguel, C.R., Hernández-Gómez, L.H., Urriolagoitia-Calderón, G., Carbajal-Romero, M.F.: Development of an experimental apparatus for testing a total knee prostheses focused on mexican phenotype. Int. J. Phys. Sci. 7(43), 5779–5786. (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Juan José Muñoz-César
    • 1
  • Luis Héctor Hernández-Gómez
    • 1
    Email author
  • Omar Ismael López-Suárez
    • 1
  • Guillermo Urriolagoitia-Sosa
    • 1
  • Juan Alfonso Beltrán-Fernández
    • 1
  • Guillermo Urriolagoitia-Calderón
    • 1
  • Nefi David Pava-Chipol
    • 1
  • Ivan José Quintero-Gómez
    • 2
  1. 1.Instituto Politécnico Nacional. ESIME-SEPIUnidad Profesional “Adolfo López Mateos” Edificio 5, 3º PisoMéxico, Distrito Federal México
  2. 2.Hospital Regional ISSSTE 1º de OctubreAv. Instituto Politécnico NacionalMéxico, Distrito Federal México

Personalised recommendations