Advertisement

Instruments and Sensors

  • Kolumban HutterEmail author
  • Yongqi Wang
  • Irina P. Chubarenko
Chapter
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)

Abstract

An overview of traditional field measurement tools are presented in this chapter. Instruments and sensors are described, commonly used in field practice to measure water currents, water temperature, electrical conductivity, water level, depth, limnologically relevant optical properties and characteristics of turbulence. Among the current meters, various principles of operation and different primary converters of mechanical, acoustic, electromagnetic instruments are discussed. Physical principles of measurements of water temperature and electrical conductivity are considered, along with the main constructive features of famous historical (Galileo’s thermometer, reversing thermometer) and popular modern (CTDs) instruments. Water level and water depth measurements go back to the nineteenth century, and this chapter presents the tools for that—from point-pole and sounding lead to standard limnigraph and echo-sounder. Tools to quantify optical properties of lake water range from simple but reliable scales to define water colour and water transparency—the hue scale, the Forel-Uhl scale, the Secchi disk—to complicated modern photometers and lasers. Finally, concept of turbulence is introduced in most a simple way, in order to explain the reader how its features are deduced from time series of water velocity or temperature, which are measured by turbulimeters; examples of such instruments are presented.

Keywords

Internal Wave Suspended Matter Water Density Current Speed Secchi Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols

Roman

Symbols

\({\varvec{B}}\)

Magnetic field of the Earth

\(f\)

Symbol for a physical variable

\(\bar{f}\)

Mean value of \(f\)

\(f^{\prime }\)

Fluctuation/pulsation of \(f\)

\(F_T\)

Frequency of eigenoscillation

\(g\)

Gravity constant

\(H\)

Depth, water depth

\(H_{sw}(z)\)

Radiation

\(L\)

Characteristic length

\(L_K\)

Kolmogorov length (1 mm)

\(l\)

Distance between electrodes

\(p\)

Pressure

\(Re\)

Reynolds number

\(R_t, (R_0)\)

Electric resistances of the interior (exterior) of a region

\(T\)

Temperature

\(T_K\)

Kolmogorov time (1 s)

\(U\)

Velocity modulus

\({\varvec{V}}\)

Velocity vector

\(z_s\)

Secchi disk depth

Greek

Symbols

\(\alpha , \beta , \gamma \)

Coefficients in parameterizations

\(\beta \)

Isothermal compressibility

\(\varDelta \rho _s\)

Density anomaly due to dissolved substances

\(\varepsilon \)

Electric/magnetic potential, light extinction/absorption coefficient, specific turbulent dissipation rate

\(\kappa \)

Specific turbulent kinetic energy

\(\nu \)

Kinematic viscosity

\(\rho \)

Density

\(\rho _{*} = \rho _w\)

\(=1,000\) kg m\(^{-3}\)

\(\rho _T\)

Density of pure water

\(\sigma _t = \rho - \rho _{*}\)

Density anomaly

References

  1. 1.
    Anisimova, E.P., Speranskaya, A.A.: Turbulence in stratified flows. Proc. of Moscow Univ. Series 3 - Physics, astronomy 18(1), 70–77 (1977) (in Russian)Google Scholar
  2. 2.
    Arvan, B.M., Kushnikov, V.V., Nabatov, V.N., Paka, V.T.: Free-fall microstructure profiler “BAKLAN”. In: Methods and Technology of Hydrophysical and Geophysical Studies in the World Ocean. P.P. Shirshov Institute of Oceanology, 8–12 (1985) (in Russian)Google Scholar
  3. 3.
    D’Asaro, E. A. and Lien, R.C.: Lagrangean measurements of waves and turbulence in stratified flows. J. Phys. Oceanogr. 30(3), 641–655 (2000)Google Scholar
  4. 4.
    D’Asaro, E. A.: Performance of Autonomous Lagrangean Floats. J. of  Atm. and Ocean. Technol. 20, 896–911 (2003)Google Scholar
  5. 5.
    Baker, D.J.: Ocean Instruments and Experiment Design. In: Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel (eds. B.Warren, C. Wunsch). RES. 12–000 Spring 2007 (Massachusetts Institute of Technology: MIT, OpenCourseWare), http://ocw.mit.edu (Accessed 05. Feb., 2013). Licence: Creative Commons BY-NC-SA396-433
  6. 6.
    Baretta-Bekker, J.G., Duursma, E.K., Kuipers, B.R.: Encyclopedia of marine sciences, eds. - 2\(^{nd}\), Springer-Verlag, Berlin Heidelberg (1998)Google Scholar
  7. 7.
    Bertuccioli, L., Roth, G.I., Katz, J., Osborn, T.R.: A submersible particle image velocimetry system for turbulence measurements in the bottom boundary layer. J. Atmos. Ocean. Technol. 16, 1635–1646 (1999)Google Scholar
  8. 8.
    Cannon, G.A.: Statistical characteristics of velocity fluctuations at intermediate scales in a coastal plain estuary. J. of Phys. Ocean. 1, 5852–5858 (1971)Google Scholar
  9. 9.
    Carter, G.D., Imberger, J.: Vertically rising microstructure profiler. Journal of Atmospheric and Oceanic Technology 3, 462–471 (1986)Google Scholar
  10. 10.
    Chen, C.T. and Millero, F.J.: Precise thermodynamic properties for natural waters covering only the limnological range. Limnol. Oceanogr. 31, 657–662 (1986)Google Scholar
  11. 11.
    Chubarenko, I., Chubarenko, B., Bäuerle, E., Wang, Y., Hutter, K.: Autumn physical limnological experimental campaign in the Island Mainau littoral zone of Lake Constance. J. Limnol. 62(1), 115–119 (2003)Google Scholar
  12. 12.
    Defant, A.: Physical Oceanography. Pergamon Press, London, Vol. 1, pp. xvi + 729; Vol. 2, pp. viii + 598 (1961)Google Scholar
  13. 13.
    Dewey, R.K., Crawford, A.E., Gargett, A.E., Oakey, N.S.: A microstructure instrument for profiling oceanic turbulence in coastal bottom boundary layers. Journal of Atmospheric and Oceanic Technology 4, 288–297 (1987)Google Scholar
  14. 14.
    Dillon, T.M., Powell, T.M.: Low-frequency turbulence spectra in the mixed layer of Lake Tahoe, California-Nevada. J. Geoph. Res. 81(36), 6421–6427 (1976)Google Scholar
  15. 15.
    Dimaksian, A.M.: Hydrological instruments. Leningrad, Hydrometeoizdat, 284 p. (1972) (in Russian)Google Scholar
  16. 16.
    Fedorov, K.N., Ginzburg, A.I.: Near-the-surface layer of the ocean. Leningrad, Hydrometeoizdat. 304 p. (1988) (in Russian)Google Scholar
  17. 17.
    Filatov, N.N.: Dynamics of lakes. Leningrad, Hydrometeoizdat, 166 p. (1983) (in Russian)Google Scholar
  18. 18.
    Fomin, L.M., Kushnir, V.M., Titov, V.B.: Measurement of oceanic currents. Moscow, Nauka Publishing House, 200 p. (1989) (in Russian)Google Scholar
  19. 19.
    Forel, F.A.: Le Léman: monographie limnologique. F. Rouge, Librairée de l’Université de Lausanne, Vol. 1, 1892, 539 p.; Vol. 2, 651 p. (1895); Vol. 3, 715 p. (1904)Google Scholar
  20. 20.
    Gargett, A.E., Osborn, T.R., and Nasmyth, P.W.: Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech. 144, 231–280 (1984)Google Scholar
  21. 21.
    Gibson, C.H., Nabatov, V.N., Ozmidov R.V.: Measurements of turbulence and fossil turbulence near Ampere seamount. Dyn. Atmos. Oceans 19, 175–204 (1993)Google Scholar
  22. 22.
    Gibson, C.H., Swartz, W.H.: Detection of conductivity fluctuations in a turbulent flow field. J. Fluid Mech. 16, 357–364 (1963)Google Scholar
  23. 23.
    Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press, 662 p. (1982)Google Scholar
  24. 24.
    Gregg, M.C., Nodland, W.E., Aagaard, E.E., Hirt, D.H.: Use of fiber-optic cable with a free-fall microstructure profiler. OCEANS82 Conference Record, Washington, DC. Mar. Technol. Soc., 260–265 (1982)Google Scholar
  25. 25.
    Gregg, M.C.: The study of mixing in the ocean: a brief history. Oceanography 4, 39–45 (1991)Google Scholar
  26. 26.
    Haltrin, V.I., Lee, M.E., Martynov, O.V.: Polar nephelometer for sea truth measurements. Proc. Second International Airborne Remote Sensing Conference and Exhibition: Technology, Measurement and Analysis, Vol. II, San Francisco, California, 24–27 (1996)Google Scholar
  27. 27.
    Hutter, K., Visher, D.: Lake hydraulics. In: Developments in Hydraulic Engineering, (Ed. P. Novak) Vol. 4, 1–63. New York, Elsevier (1987)Google Scholar
  28. 28.
    Imberger, J., Head, R.: Measurement of turbulent properties in a natural system. In: Fundamental and Advancements in Hydraulic Measurements and Experimentation. New York, Hydraul. Div. ASCE (1994)Google Scholar
  29. 29.
    IOC, SCOR and IAPSO: The international thermodynamic equation of seawater - 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, UNESCO, 196 p. (2010)Google Scholar
  30. 30.
    Jallabert, J.: Seiches ou flux et reflux du lac de Genève. Histoire de l’Acad. Royale des Sciences, pour 1742, Paris, p. 26, 1745Google Scholar
  31. 31.
    Kenney, B.: Lake surface fluctuations and the mass flow through the narrows of lake Winnipeg. J. Geoph. Res. 84, NC3, 1225–1235 (1979)Google Scholar
  32. 32.
    Kireev, A.V., Drakov, S.N., Migulia, V.V.: Many-channel nephelometer "Kvant-4" Hydrooptical Investigations. Moscow, P.P.Shirshov Insttute of Oceanology RAS, 79–82 (1985) (in Russian)Google Scholar
  33. 33.
    Lhermitte, R., Lemmin, U.: Open-channel flow and turbulence measurement by high-resolution Doppler sonar. J. Atmos. Ocean. Technol. 11, 1295–308 (1994)Google Scholar
  34. 34.
    Lilover, M.J., Lozovatsky, I.D., Gibson, C.H., Nabatov, V.N.: Turbulence exchange through the equatorial undercurrent core of the central Pacific. J. Mar. Syst. 4, 183–195 (1993)Google Scholar
  35. 35.
    Lohrmann, A., Hackett, B., Roed, L.P.: Heigh-resolution measurement of turbulence, velocity and stress using a pulse-to-pulse coherent sonar. J. Atmos. Ocean. Technol. 7, 19–37 (1990)Google Scholar
  36. 36.
    Lu, Y., Lueck, R.G.: Using a broadband ADCP in a tidal channel. Part II: turbulence. J. Atmos. Ocean. Technol. 16, 1568–1579 (1999)Google Scholar
  37. 37.
    Lueck, R.G.: Microstructure measurements in a thermohaline staircase. Deep-Sea Res. 34, 1677–1688 (1987)Google Scholar
  38. 38.
    Luketina, D.A., Imberger, J.: Determining turbulent kinetic energy dissipation from Batchelor curve fitting. J. Atmos. Ocean. Technol. 18, 100–113 (2001)Google Scholar
  39. 39.
    Martyn, J.L., McCutcheon, S.C.: Hydrodynamics and transport for water quality modelling. Lewis Publishers, Boca Raton, London, New York, Washington, D.C. (1998)Google Scholar
  40. 40.
    Monin, A.S., Yaglom, A.M.: Statistical hydromechanics. Moscow, Nauka Publishing House, (1965) (in Russian)Google Scholar
  41. 41.
    Monin, A.S. (ed.) Oceanology. Physics of the Ocean. V. 1. Hydrophysics of the Ocean. Nauka Publishing House, Moscow, (1978) (in Russian)Google Scholar
  42. 42.
    Monin, A.S., Ozmidov, R.V.: Turbulence in the Ocean. D. Reidel Publ. Co. (1985)Google Scholar
  43. 43.
    Moum, J.N., Gregg, M., Licen, C., Carr, M.E.: Comparison of turbulence kinetic energy dissipation rate estimates from two ocean microstructure profiler. J. Atmos. Ocean. Technol. 12, 346–365 (1995)Google Scholar
  44. 44.
    Müller, B., Märki, M., Dinkel, C., Stierli, R., Wehrli, B.: In-situ measurements in lake sediments using ion-selective electrodes with a profiling lander system. In: Environmental Electrochemistry, ed. M. Taillefert, T.F. Rozan, 126–143. Washington, DC: Am. Geophys. Union (2002)Google Scholar
  45. 45.
    Nansen, F.: The Norwegian North Polar Expedition, 1893–1896. Scientific Results III. Greenwood Press, reprint 1969, 520 pp. (1902)Google Scholar
  46. 46.
    Nöschel, A.: Bemerkungen über den Goktscha-see am Kaukasus, in geognostischer, hydrographischer und meteorologischer Beziehung. Verhandlungen der Russ. K. Min. Ges. zu St. Petersburg. (1854)Google Scholar
  47. 47.
    Oakey, N.S.: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr. 12, 256–271 (1982)Google Scholar
  48. 48.
    Oakey, N.S.: EPSONDE: an instrument to measure turbulence in the deep ocean. IEEE Journal of Oceanic Engineering 13, 124–128 (1988)Google Scholar
  49. 49.
    Osborn, T.R.: The design and performance of free-fall microstructure instruments at the Institute of Oceanography, University of British Columbia. IOUBC Manuscript, Report No. 30 (1978)Google Scholar
  50. 50.
    Osborn, T.R., Crowford, W.R.: An airfoil probe for measuring velocity fluctuations in the water. Air-Sea Interaction: Instrumants and methods, F.Dobson, L. Hasse, and R.Davis, Eds., Plenum, 369–386 (1980)Google Scholar
  51. 51.
    Paka, V.T., Fedorov, K.N.: On influence of thermal structure of oceanic upper layer on turbulence development. Proceedings of Academy of Sciences of USSR, Physics of Atmosphere and the Ocean 18(2), 178–184 (1982) (in Russian)Google Scholar
  52. 52.
    Paka, V.T., Nabatov, V., Lozovatsky, J., Dillon, T.: Oceanic microstructure measurements by BAKLAN and GRIF. J. Atmos. Ocean. Technol. 16, 1519–1532 (1999)Google Scholar
  53. 53.
    Palmer, M.D.: Some kinetic energy spectra in a near shore region of lake Ontario. J. of Geoph. Res. 1(78), 3585–3597 (1973)Google Scholar
  54. 54.
    Pokatilova, T.N.: Spectral attenuation of solar radiation in natural waters. In: Hydrology of Baikal and other reservoirs, Ed. - Verbolov, V.I. Novosibirsk, Nauka, 14–19 (1984)Google Scholar
  55. 55.
    Popov, N.I., Fedorov, K.N., Orlov, V.M.: Marine water. Nauka Publishing House, Moscow, 328 p. (1979)Google Scholar
  56. 56.
    Prandke, H., Krueger, S., Roeder, W.: Aufbau und Funktion einer frei fallenden Sonde zur Untersuchung der Mikrostruktur der thermohalinen Schichtung im Meer. Acta Hydrophysica 29, 165–210 (1985)Google Scholar
  57. 57.
    Prandke, H., Stips, A.: Investigation of microstructure and turbulence in marine and limnic waters using the MST profiler. Ispra Joint Research Center, European Commission. Technical Note No. I.96.87 (1996)Google Scholar
  58. 58.
    Prandtke, H., Stips A.: Test measurements with an operational microstructure-turbulence profiler: detection limit of dissipation rates. Aquat. Sci. 60, 191–209 (1998)Google Scholar
  59. 59.
    Saggio, A., Imberger, J.: Mixing and turbulent fluxes in the metalimnion of a stratified lake. Limnol. Oceanogr. 46, 392–409 (2001)Google Scholar
  60. 60.
    Samoliubov B.I.: Bottom stratified currents. Moscow, Nauchny Mir, 464 p. (1999)Google Scholar
  61. 61.
    Schulthaiss, C.: Wunder anloffen des Wassers. Collectaneen, 6, 80–81. Stadtarchiv Konstaz (1549)Google Scholar
  62. 62.
    Schumacher, A.: Neue Hilfstafeln für die Umkippthermometer nach Richter und Beitrag zur thermometrischen Tiefenmessung. Annalen der Hydrographie und Maritimen Meteorologie 51, 273–280 (1923)Google Scholar
  63. 63.
    Simpson, J.H., Crawford, W.R., Rippeth, T.P., Campbell, A.R., Cheok, J.V.S.: Vertical structure of turbulent dissipation in shelf seas. Journal of Physical Oceanography 26, 1580–1590 (1996)Google Scholar
  64. 64.
    Spence, D.H.N.: Light quality and plant response under water. In Plants and the Daylight Spectrum, H. Smith, ed., Academic, New Yourk, 245–276 (1981)Google Scholar
  65. 65.
    Stabel, H.-H.: Calcite precipitation in Lake Constance: Chemical equilibrium, sedimentation, and nucleation by algae. Limnol. Oceanogr. 31, 1081–1094 (1986)Google Scholar
  66. 66.
    Stabrowski, M.: (Extrait). Du phenomene des seiches: observations faites durant un sejour de sept annees du Lac Oniega. Compt. Rend., XLV. Paris (1857)Google Scholar
  67. 67.
    Stevens, C., Smith, M., Ross, A.: SCAMP: measuring turbulence in estuaries, lakes, and coastal waters.NIWA Water and Atmosphere 7(2), 20–21 (1999)Google Scholar
  68. 68.
    Steward, R.H.: Introduction to Physical Oceanography. http://oceanworld.tamu.edu/resources/
  69. 69.
    Stewart, R.W., Grant, H.L.: Determination of the rate of dissipation of turbulent energy near the sea surface in the presence of waves. Journal of Geophysical Research 67, 3177–3180 (1962)Google Scholar
  70. 70.
    Stommel, H.: Discussion at the Woods Hole Convocation, June 1954. Journal of Marine Research 14, 504–510 (1955)Google Scholar
  71. 71.
    Swallow, J.C.: A neutral-buoyancy float for measuring deep currents. Deep-Sea Research 3, 74–81 (1955)Google Scholar
  72. 72.
    Thorpe, S.A.: Turbulence and mixing in a Scottish Loch. Phil. Trans. Royal. Soc. of London 286, A1334, p. 17–181 (1977)Google Scholar
  73. 73.
    Tilzer, M.M.: The importance of fractional light absorption by photosynthetic pigments for phytoplankton productivity in Lake Constance. Limnol. Oceanogr. 28: 833–846 (1983)Google Scholar
  74. 74.
    UNESCO: The Practical Salinity Scale 1978 and the International Equation of State of Seawater 1980. Unesco technical papers in marine science 36, 25pp. (1981)Google Scholar
  75. 75.
    Vasilkov, A.P., Kelbalihanov, B.F., Stefanzev, L.A.: Effect of "cleaning up" of thin oceanic surface layer. Proceedings of Academy of Sciences of USSR, Physics of Atmosphere and the Ocean 21(12), p. 1327–1330 (1985) (in Russian)Google Scholar
  76. 76.
    Vaucher, J.-P.E.: Mémoire sur les seiches du lac de Genève, composé de 1803 a 1804. Mém. Soc. Phys. VI(35), Genève (1833)Google Scholar
  77. 77.
    Verduin, J.: Components contributing to light extinction in natural waters: methods of isolation, Archives of Hydrobiology 93, 303–312 (1982)Google Scholar
  78. 78.
    Wetzel, R.G.:Limnology. Saunders College Publishing, Philadelphia, PA (1975)Google Scholar
  79. 79.
    Williams, D.T.: Determination of Light Extinction Coefficients in Lakes and Reservoirs. Proc. Symp. on Surface Water Impoundments, H.G. Stefan, Am. Soc. of Civil Eng. (1980)Google Scholar
  80. 80.
    Wolk, F., Yamazaki, H., Seuront, L., Lueck, R.G.: A new free-fall profiler for measuring bio-physical microstructure. Journal of Atmospheric and Oceanic Technology 19, 780–793 (2002)Google Scholar
  81. 81.
    Wright, D.G., Pawlowicz, R., McDougall, T. J., Feistel, R., and G. M. Marion: Absolute Salinity, Density Salinity and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10. Ocean Sci. Discuss. 7, 1559–1625 (2010)Google Scholar
  82. 82.
    Wüest, A., Lorke, A.: Small-scale hydrodynamics in lakes. Annu. Rev. Fluid Mech. 35, 373–412 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kolumban Hutter
    • 1
    Email author
  • Yongqi Wang
    • 2
  • Irina P. Chubarenko
    • 3
  1. 1.c/o Laboratory of Hydraulics, Hydrology and Glaciology at ETHZürichSwitzerland
  2. 2.Chair of Fluid Dynamics, Department of Mechanical EngineeringTU DarmstadtDarmstadtGermany
  3. 3.P.P. Shirshov Institute of OceanologyRussian Academy of SciencesKaliningradRussia

Personalised recommendations