Kernels and Designs for Modelling Invariant Functions: From Group Invariance to Additivity

  • David Ginsbourger
  • Nicolas Durrande
  • Olivier Roustant
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


We focus on kernels incorporating different kinds of prior knowledge on functions to be approximated by Kriging. A recent result on random fields with paths invariant under a group action is generalised to combinations of composition operators, and a characterisation of kernels leading to random fields with additive paths is obtained as a corollary. A discussion follows on some implications on design of experiments, and it is shown in the case of additive kernels that the so-called class of “axis designs” outperforms Latin hypercubes in terms of the IMSE criterion.


  1. Carnell, R.: lhs: Latin Hypercube Samples. R package version 0.5 (2009) Google Scholar
  2. Durrande, N., Ginsbourger, D., Roustant, O.: Additive covariance kernels for high-dimensional Gaussian process modeling. Ann. Fac. Sci. Toulouse 21, 481–499 (2012). MATHCrossRefGoogle Scholar
  3. Duvenaud, D., Nickisch, H., Rasmussen, C.: Additive Gaussian processes. In: Proc. 25th Annual Conference on Neural Information Processing Systems 2011 (2011). Google Scholar
  4. Ginsbourger, D., Bay, X., Roustant, O., Carraro, L.: Argumentwise invariant kernels for the approximation of invariant functions. Ann. Fac. Sci. Toulouse 21, 501–527 (2012). MATHCrossRefGoogle Scholar
  5. Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman & Hall/CRC, Boca Raton (1990) MATHGoogle Scholar
  6. Loeppky, J., Sacks, J., Welch, W.: Choosing the sample size of a computer experiment: a practical guide. Technometrics 51, 366–376 (2009) MathSciNetCrossRefGoogle Scholar
  7. Rasmussen, C.R., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006) MATHGoogle Scholar
  8. Roustant, O., Ginsbourger, D., Deville, Y.: Two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization. J. Stat. Softw. 51, 1–55 (2012). Google Scholar
  9. Santner, T., Williams, B., Notz, W.: The Design and Analysis of Computer Experiments. Springer, New York (2003) MATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • David Ginsbourger
    • 1
  • Nicolas Durrande
    • 2
  • Olivier Roustant
    • 3
  1. 1.Institute of Mathematical Statistics and Actuarial ScienceUniversity of BernBernSwitzerland
  2. 2.Department of Computer ScienceThe University of SheffieldSheffieldUK
  3. 3.FAYOL-EMSE, LSTIEcole Nationale Supérieure des Mines de Saint-EtienneSaint-EtienneFrance

Personalised recommendations