Advertisement

From Clock Synchronization to Dark Matter as a Relativistic Inertial Effect

  • Luca LusannaEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 144)

Abstract

One of the main open problems in astrophysics is the dominance of dark entities, the dark matter and the dark energy, in the existing description of the universe given by the standard \(\varLambda \)CDM cosmological model [1, 2] based on the cosmological principle (homogeneity and isotropy of the space-time), which selects the class of Friedmann-Robertson-Walker (FWR) space-times.

References

  1. 1.
    M. Bartelmann, The dark universe. Rev. Mod. Phys. 82, 331 (2010) (arXiv 0906.5036)Google Scholar
  2. 2.
    R. Bean, TASI 2009. Lectures on Cosmic Acceleration (arXiv 1003.4468).Google Scholar
  3. 3.
    UCLA 2007, The ABC’s of Distances (http://www.astro.ucla.edu/wright/distance.htm
  4. 4.
    B.W. Carroll, D.A. Ostlie, An Introduction to Modern Astrophysics, 2nd edn. (Pearson Eduction Inc., New Jersey, 2007)Google Scholar
  5. 5.
    J. Kovalevski, I.I. Mueller, B. Kolaczek, Reference Frames in Astronomy and Geophysics (Kluwer, Dordrecht, 1989)CrossRefGoogle Scholar
  6. 6.
    O.J. Sovers, J.L. Fanselow, Astrometry and geodesy with radio interferometry: experiments, models, results. Rev. Mod. Phys. 70, 1393 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    C. Ma, E.F. Arias, T.M. Eubanks, A.L. Fey, A.M. Gontier, C.S. Jacobs, O.J. Sovers, B.A. Archinal, P. Charlot, The international celestial reference frame as realized by very long baseline interferometry. AJ 116, 516 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    K.J. Johnstone, Chr. de Vegt, Reference frames in astronomy. Annu. Rev. Astron. Astrophys. 37, 97 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    A. Fey, G. Gordon, C. Jacobs (eds.), The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry, 2009 IERS Technical, Notes 35.Google Scholar
  10. 10.
    L. Lusanna, Canonical Gravity and Relativistic Metrology: From Clock Synchronization to Dark Matter as a Relativistic Inertial Effect (arXiv 1108.3224)Google Scholar
  11. 11.
    M.Soffel, S.A. Klioner, G. Petit, P. Wolf, S.M. Kopeikin, P. Bretagnon, V.A. Brumberg, N. Capitaine, T. Damour, T. Fukushima, B. Guinot, T. Huang, L. Lindegren, C. Ma, K. Nordtvedt, J. Ries, P.K. Seidelmann, D. Vokroulicky’, C. Will, Ch. Xu, The IAU 2000 resolutions for astrometry, celestial mechanics and metrology in the relativistic rramework: explanatory supplement. Astron. J., 126, 2687–2706 (2003) (arXiv astro-ph/0303376).Google Scholar
  12. 12.
    D.D. McCarthy, G. Petit, IERS TN 32 (2004), Verlag des BKG. Kaplan G.H., The IAU Resolutions on Astronomical Reference Systems, Time Scales and Earth Rotation Models, IERS Conventions (2003). U.S.Naval Observatory circular No. 179 (2005) (arXiv astro-ph/0602086)Google Scholar
  13. 13.
    T.D. Moyer, Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation (John Wiley, New York, 2003)CrossRefGoogle Scholar
  14. 14.
    S. Jordan, The GAIA project: technique, performance and status. Astron. Nachr. 329, 875 (2008). doi: 10.1002/asna.200811065 ADSCrossRefGoogle Scholar
  15. 15.
    R. Arnowitt, S. Deser, C.W. Misner, in The Dynamics of General Relativity, ch.7 of Gravitation: An Introduction to Current Research, ed. by L. Witten (Wiley, New York, 1962) (arXiv gr-qc/0405109)Google Scholar
  16. 16.
    P.A.M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Monographs Series (Yeshiva University, New York, 1964)Google Scholar
  17. 17.
    M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1992)zbMATHGoogle Scholar
  18. 18.
    S. Shanmugadhasan, Canonical formalism for degenerate Lagrangians. J. Math. Phys. 14, 677 (1973)ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    L. Lusanna, The Shanmugadhasan canonical transformation, function groups and the second Noether Theorem. Int. J. Mod. Phys. A8, 4193 (1993)MathSciNetADSGoogle Scholar
  20. 20.
    L. Lusanna, The Relevance of Canonical Transformations in Gauge Theories and General Relativity, Lecture Notes of “Seminario Interdisciplinare di Matematica” (Basilicata Univ.) 5, 125 (2006)Google Scholar
  21. 21.
    M. Chaichian, D. Louis Martinez, L. Lusanna, Dirac’s constrained systems: the classification of second-class constraints, Ann. Phys. (N.Y.) 232, 40 (1994)Google Scholar
  22. 22.
    B. Dittrich, Partial and complete observables for hamiltonian constrained systems. Gen. Rel. Grav. 39, 1891 (2007) (arXiv gr-qc/0411013)Google Scholar
  23. 23.
    B. Dittrich, Partial and complete observables for canonical general relativity. Gen. Rel. Grav. 23, 6155 (2006) (arXiv gr-qc/0507106)Google Scholar
  24. 24.
    T. Thiemann, Reduced phase space quantization and Dirac observables. Class. Quantum Grav. 23, 1163 (2006) (arXiv gr-qc/0411031)Google Scholar
  25. 25.
    J.M. Pons, D.C. Salisbury, K.A. Sundermeyer, Revisiting observables in generally covariant theories in the light of gauge fixing methods. Phys. Rev. D80, 084015 (2009) (0905.4564)Google Scholar
  26. 26.
    J.M. Pons, D.C. Salisbury, K.A. Sundermeyer, Observables in classical canonical gravity: folklore demystified (arXiv 1001.2726)Google Scholar
  27. 27.
    V. Moncrief, Space-time symmetries and linearization stability of the Einstein equations, I. J. Math. Phys. 16, 493 (1975)MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    V. Moncrief, Decompositions of gravitational perturbations. J. Math. Phys. 16, 1556 (1975)Google Scholar
  29. 29.
    V. Moncrief, Space-time symmetries and linearization stability of the Einstein equations, II. J. Math. Phys. 17, 1893 (1976)Google Scholar
  30. 30.
    V. Moncrief, Invariant states and quantized gravitational perturbations. Phys. Rev. D18, 983 (1978)Google Scholar
  31. 31.
    Y. Choquet-Bruhat, A.E. Fischer, J.E. Marsden, Maximal hypersurfaces and positivity of mass, LXVII E. Fermi Summer School of Physics Isolated Gravitating Systems in General Relativity, ed. by J. Ehlers (North-Holland, Amsterdam, 1979)Google Scholar
  32. 32.
    A.E. Fisher, J.E. Marsden, The Initial Value Problem and the Dynamical Formulation of General Relativity, in General Relativity. An Einstein Centenary Survey, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1979)Google Scholar
  33. 33.
    A. Ashtekar, Asymptotic Structure of the Gravitational Field at Spatial Infinity, in General Relativity and Gravitation, vol 2, ed. by A. Held (Plenum, New York, 1980)Google Scholar
  34. 34.
    P.J. McCarthy, Asymptotically flat space-times and elementary particles. Phys. Rev. Lett. 29, 817 (1972)ADSCrossRefGoogle Scholar
  35. 35.
    P.J. McCarthy, Structure of the Bondi-Metzner-Sachs group. J. Math. Phys. 13, 1837 (1972)ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    R. Beig, Ó. Murchadha, The Poincaré Group as the Symmetry Group of Canonical General Relativity. Ann. Phys. (N.Y.) 174, 463 (1987)Google Scholar
  37. 37.
    L. Fatibene, M. Ferraris, M. Francaviglia, L. Lusanna, ADm pseudotensors, conserved quantities and covariant conservation laws in general relativity. Ann. Phys. Ann.Phys. 327, 1593 (2012) (arXiv 1007.4071)Google Scholar
  38. 38.
    J.L. Jaramillo, E. Gourgoulhon, Mass and Angular Momentum in General Relativity, in Mass and Motion in General Relativity, ed. by L. Blanchet, A. Spallicci, B. Whiting, Fundamental Theories in Physics, vol 162 (Springer, Berlin, 2011), p. 87 (arXiv 1001.5429)Google Scholar
  39. 39.
    L.B. Szabados, On the roots of Poincaré structure of asymptotically flat spacetimes. Class. Quant. Grav. 20, 2627 (2003) (arXiv gr-qc/0302033)Google Scholar
  40. 40.
    D. Christodoulou, S. Klainerman, The Global Nonlinear Stability of the Minkowski Space (Princeton University Press, Princeton, 1993)zbMATHGoogle Scholar
  41. 41.
    L. Lusanna, The rest-frame instant form of metric gravity. Gen. Rel. Grav. 33, 1579 (2001) (arXiv gr-qc/0101048)Google Scholar
  42. 42.
    L. Lusanna, S. Russo, A new parametrization for tetrad gravity. Gen. Rel. Grav. 34, 189 (2002) (arXiv gr-qc/0102074)Google Scholar
  43. 43.
    R. DePietri, L. Lusanna, L. Martucci, S. Russo, Dirac’s observables for the rest-frame instant form of tetrad gravity in a completely fixed 3-orthogonal gauge. Gen. Rel. Grav. 34, 877 (2002) (arXiv gr-qc/0105084)Google Scholar
  44. 44.
    J. Agresti, R. De Pietri, L. Lusanna, L. Martucci, Hamiltonian linearization of the rest-frame instant form of tetrad gravity in a completely fixed 3-orthogonal gauge: a radiation gauge for background-independent gravitational waves in a post-Minkowskian Einstein spacetime. Gen. Rel. Grav. 36, 1055 (2004) (arXiv gr-qc/0302084)Google Scholar
  45. 45.
    C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004)zbMATHCrossRefGoogle Scholar
  46. 46.
    R. Geroch, Spinor structure of space-times in general relativity I. J. Math. Phys. 9, 1739 (1968)MathSciNetADSzbMATHCrossRefGoogle Scholar
  47. 47.
    B. Mashhoon, The Hypothesis of Locality and its Limitations, in Relativity in Rotating Frames, ed. by G. Rizzi, M.L. Ruggiero (Kluwer, Dordrecht, 2003) (arXiv gr-qc/0303029)Google Scholar
  48. 48.
    B. Mashhoon, U. Muench, Length measurements in accelerated systems. Ann. Phys. (Leipzig) 11, 532 (2002)Google Scholar
  49. 49.
    D. Alba, L. Lusanna, Charged particles and the electro-magnetic field in non-inertial frames: I. Admissible 3+1 splittings of minkowski spacetime and the non-inertial rest frames. Int. J. Geom. Meth. Phys. 7, 33 (2010) (arXiv 0908.0213)Google Scholar
  50. 50.
    D. Alba, L. Lusanna, Charged particles and the electro-magnetic field in non-inertial frames: II. Applications: rotating frames, Sagnac effect, Faraday rotation, wrap-up effect. Int. J. Geom. Meth. Phys. 7, 185 (2010) (arXiv 0908.0215)Google Scholar
  51. 51.
    D. Alba, L. Lusanna, Generalized radar 4-coordinates and equal-time cauchy surfaces for arbitrary accelerated observers (2005). Int. J. Mod. Phys. D16, 1149 (2007) (arXiv gr-qc/0501090)Google Scholar
  52. 52.
    D. Bini, L. Lusanna, B. Mashhoon, Limitations of radar coordinates. Int. J. Mod. Phys. D14, 1 (2005) (arXiv gr-qc/0409052)Google Scholar
  53. 53.
    H. Bondi, Assumption and Myth in Physical Theory (Cambridge University Press, Cambridge, 1967)Google Scholar
  54. 54.
    R. D’Inverno, Introducing Einstein Relativity (Oxford University Press, Oxford, 1992)zbMATHGoogle Scholar
  55. 55.
    L. Lusanna, The N- and 1-time classical descriptions of N-body relativistic kinematics and the electromagnetic interaction. Int. J. Mod. Phys. A12, 645 (1997)MathSciNetADSGoogle Scholar
  56. 56.
    L. Lusanna, The Chrono-Geometrical Structure of Special and General Relativity: A Re-Visitation of Canonical Geometrodynamics. Lectures at 42nd Karpacz Winter School of Theoretical Physics: Current Mathematical Topics in Gravitation and Cosmology, Ladek, Poland, 6–11 Feb 2006. Int. J. Geom. Methods in Mod. Phys. 4, 79 (2007). (arXiv gr-qc/0604120)Google Scholar
  57. 57.
    L. Lusanna, The Chronogeometrical Structure of Special and General Relativity: towards a Background-Independent Description of the Gravitational Field and Elementary Particles (2004), in General Relativity Research Trends, ed. by A. Reiner, Horizon in World Physics, vol. 249 (Nova Science, New York, 2005) (arXiv gr-qc/0404122)Google Scholar
  58. 58.
    E. Schmutzer, J. Plebanski, Quantum mechanics in noninertial frames of reference. Fortschr. Phys. 25, 37 (1978)MathSciNetCrossRefGoogle Scholar
  59. 59.
    D. Alba, L. Lusanna, M. Pauri, New Directions in Non-Relativistic and Relativistic Rotational and Multipole Kinematics for N-Body and Continuous Systems (2005), in Atomic and Molecular Clusters: New Research, ed. by Y.L. Ping (Nova Science, New York, 2006) (arXiv hep-th/0505005)Google Scholar
  60. 60.
    D. Alba, L. Lusanna, M. Pauri, Centers of mass and rotational kinematics for the relativistic N-body problem in the rest-frame instant form. J. Math. Phys. 43, 1677–1727 (2002) (arXiv hep-th/0102087)Google Scholar
  61. 61.
    D. Alba, L. Lusanna, M. Pauri, Multipolar expansions for closed and open systems of relativistic particles. J. Math. Phys. 46, 062505, 1–36 (2004) (arXiv hep-th/0402181)Google Scholar
  62. 62.
    H.W. Crater, L. Lusanna, The rest-frame Darwin potential from the Lienard-Wiechert solution in the radiation gauge. Ann. Phys. (N.Y.) 289, 87 (2001)Google Scholar
  63. 63.
    D. Alba, H.W. Crater, L. Lusanna, The semiclassical relativistic Darwin potential for spinning particles in the rest frame instant form: two-body bound states with spin 1/2 constituents. Int. J. Mod. Phys. A16, 3365–3478 (2001) (arXiv hep-th/0103109)Google Scholar
  64. 64.
    D. Alba, L. Lusanna, The Lienard-Wiechert potential of charged scalar particles and their relation to scalar electrodynamics in the rest-frame instant form. Int. J. Mod. Phys. A13, 2791 (1998) (arXiv hep-th/0708156)Google Scholar
  65. 65.
    D. Alba, H.W. Crater, L. Lusanna, Towards relativistic atom physics. I. The rest-frame instant form of dynamics and a canonical transformation for a system of charged particles plus the electro-magnetic field. Can. J. Phys. 88, 379 (2010) (arXiv 0806.2383)Google Scholar
  66. 66.
    D. Alba, H.W. Crater, L. Lusanna, Towards relativistic atom physics. II. Collective and relative relativistic variables for a system of charged particles plus the electro-magnetic field. Can. J. Phys. 88, 425 (2010) (arXiv 0811.0715)Google Scholar
  67. 67.
    D. Alba, H.W. Crater, L. Lusanna, Hamiltonian relativistic two-body problem: center of mass and orbit reconstruction. J. Phys. A40, 9585 (2007) (arXiv gr-qc/0610200)Google Scholar
  68. 68.
    D. Alba, H.W. Crater, L. Lusanna, On the relativistic micro-canonical ensemble and relativistic kinetic theory for N relativistic particles in inertial and non-inertial rest frames (arXiv 1202.4667)Google Scholar
  69. 69.
    D. Bini, L. Lusanna, Spin-rotation couplings: spinning test particles and Dirac fields. Gen. Rel. Grav. 40, 1145 (2008) (arXiv 0710.0791)Google Scholar
  70. 70.
    F. Bigazzi, L. Lusanna, Spinning particles on spacelike hypersurfaces and their rest-frame description. Int. J. Mod. Phys. A14, 1429 (1999) (arXiv hep-th/9807052)Google Scholar
  71. 71.
    F. Bigazzi, L. Lusanna, Dirac fields on spacelike hypersurfaces, their rest-frame description and Dirac observables. Int. J. Mod. Phys. A14, 1877 (1999) (arXiv hep-th/9807054)Google Scholar
  72. 72.
    D. Alba, L. Lusanna, The classical relativistic quark model in the rest-frame Wigner-covariant Coulomb gauge. Int. J. Mod. Phys. A13, 3275 (1998) (arXiv hep-th/9705156)Google Scholar
  73. 73.
    D. Alba, H.W. Crater, L. Lusanna, Massless particles plus matter in the rest-frame instant form of dynamics. J. Phys. A 43 405203 (arXiv 1005.5521)Google Scholar
  74. 74.
    D. Alba, H.W. Crater, L. Lusanna, The rest-frame instant form and Dirac observables for the open Nambu string. Eur. Phys. J. Plus 126, 26 (2011)(arXiv 1005.3659)Google Scholar
  75. 75.
    D. Alba, H.W. Crater, L. Lusanna, A relativistic version of the two-level atom in the rest-frame instant form of dynamics. J. Phys. A46, 195303 (2013) (arXiv 1107.1669)Google Scholar
  76. 76.
    D. Alba, H.W. Crater, L. Lusanna, Relativistic quantum mechanics and relativistic entanglement in the rest-frame instant form of dynamics. J. Math. Phys. 52, 062301 (2011) (arXiv 0907.1816)Google Scholar
  77. 77.
    D. Alba, L. Lusanna, Quantum mechanics in noninertial frames with a multitemporal quantization scheme: I. Relativistic particles. Int. J. Mod. Phys. A21, 2781 (2006) (arXiv hep-th/0502194)Google Scholar
  78. 78.
    D. Alba, Quantum mechanics in noninertial frames with a multitemporal quantization scheme: II. Nonrelativistic particles. Int. J. Mod. Phys. A21, 3917 (arXiv hep-th/0504060)Google Scholar
  79. 79.
    L. Lusanna, M. Pauri, Explaining Leibniz equivalence as difference of non-inertial appearances: dis-solution of the Hole argument and physical individuation of point-events. Hist. Phil. Mod. Phys. 37, 692 (2006) (arXiv gr-qc/0604087)Google Scholar
  80. 80.
    L. Lusanna, M. Pauri, The physical role of gravitational and gauge degrees of freedom in general relativity. I: Dynamical synchronization and generalized inertial effects; II: Dirac versus Bergmann observables and the objectivity of space-time. Gen. Rel. Grav. 38, 187 and 229 (2006) (arXiv gr-qc/0403081 and 0407007)Google Scholar
  81. 81.
    L. Lusanna, M. Pauri, in Dynamical Emergence of Instantaneous 3-Spaces in a Class of Models of General Relativity, ed. by A. van der Merwe. Relativity and the Dimensionality of the World (Springer Series Fundamental Theories of Physics) (to appear) (arXiv gr-qc/0611045)Google Scholar
  82. 82.
    D. Alba, L. Lusanna, The York map as a Shanmugadhasan canonical transformation in tetrad gravity and the role of non-inertial frames in the geometrical view of the gravitational field. Gen. Rel. Grav. 39, 2149 (2007) (arXiv gr-qc/0604086, v2)Google Scholar
  83. 83.
    J. Isenberg, J.E. Marsden, The York map is a canonical transformation. J. Geom. Phys. 1, 85 (1984)Google Scholar
  84. 84.
    I. Ciufolini, J.A. Wheeler, Gravitation and Inertia (Princeton University Press, Princeton, 1995)zbMATHGoogle Scholar
  85. 85.
    J.W. York Jr., Kinematics and Dynamics of General Relativity, in Sources of Gravitational Radiation, ed. by L.L. Smarr, Battelle-Seattle Workshop 1978 (Cambridge University Press, Cambridge, 1979)Google Scholar
  86. 86.
    A. Quadir, J.A. Wheeler, York’s Cosmic Time versus Proper Time, in From SU(3) to Gravity, Y.Ne’eman;s festschrift, ed. by E. Gotsma, G. Tauber (Cambridge University Press, Cambridge, 1985)Google Scholar
  87. 87.
    R. Beig, The Classical Theory of Canonical General Relativity, in Canonical Gravity: from Classical to Quantum, Bad Honnef 1993, ed. by J. Ehlers, H. Friedrich, Lecture note in Physics 434 (Springer, Berlin, 1994)Google Scholar
  88. 88.
    D. Alba, L. Lusanna, The Einstein-Maxwell-Particle system in the York canonical basis of ADM tetrad gravity: I) The equations of motion in arbitrary Schwinger time gauges. Can. J. Phys. 90, 1017 (2012) (arXiv 0907.4087)Google Scholar
  89. 89.
    D. Alba, L. Lusanna, The Einstein-Maxwell-Particle system in the York canonical basis of ADM tetrad gravity: II) The weak field approximation in the 3-orthogonal gauges and Hamiltonian post-Minkowskian gravity: the N-body problem and gravitational waves with asymptotic background. Can. J. Phys. 90, 1077 (2012) (arXiv 1003.5143)Google Scholar
  90. 90.
    D. Alba, L. Lusanna, The Einstein-Maxwell-Particle system in the York canonical basis of ADM tetrad gravity: III) The post-Minkowskian N-body problem, its post-Newtonian limit in non-harmonic 3-orthogonal gauges and dark matter as an inertial effect. Can. J. Phys. 90, 1131 (2012) (arXiv 1009.1794)Google Scholar
  91. 91.
    D. Alba, L. Lusanna, Dust in the York Canonical Basis of ADM Tetrad Gravity: the Problem of Vorticity (arXiv 1106.0403)Google Scholar
  92. 92.
    L. Lusanna, D. Nowak-Szczepaniak, The rest-frame instant form of relativistic perfect fluids with equation of state \(\rho = \rho (\eta, s)\) and of nondissipative elastic materials. Int. J. Mod. Phys. A15, 4943 (2000)MathSciNetADSGoogle Scholar
  93. 93.
    D. Alba, L. Lusanna, Generalized Eulerian coordinates for relativistic fluids: hamiltonian rest-frame instant form, relative variables, rotational kinematics. Int. J. Mod. Phys. A19, 3025 (2004) (arXiv hep-th/020903)Google Scholar
  94. 94.
    J.D. Brown, Action functionals for relativistic perfect fluids. Class. Quantum Grav. 10, 1579 (1993)ADSzbMATHCrossRefGoogle Scholar
  95. 95.
    M. Maggiore, Gravitational Waves (Oxford University Press, Oxford, 2008)Google Scholar
  96. 96.
    E.E. Flanagan, S.A. Hughes, The basics of gravitational wave theory. New J. Phys. 7, 204 (2005) (arXiv gr-qc/0501041)Google Scholar
  97. 97.
    E. Harrison, The redshift-distance and velocity-distance laws. Astrophys. J. 403, 28 (1993)ADSCrossRefGoogle Scholar
  98. 98.
    T. Damour, N. Deruelle, General relativistic celestial mechanics of binary systems. I. The post-Newtonian motion. Ann. Inst.H.Poincare’ 43, 107 (1985)Google Scholar
  99. 99.
    T. Damour, N. Deruelle, General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula. Ann. Inst.H.Poincare’ 44, 263 (1986)Google Scholar
  100. 100.
    E. Battaner, E. Florido, The rotation curve of spiral galaxies and its cosmological implications. Fund. Cosmic Phys. 21, 1 (2000) (arXiv astro-ph/0010475)Google Scholar
  101. 101.
    D.G. Banhatti, Disk galaxy rotation curves and dark matter distribution. Curr. Sci. 94, 986 (2008) (arXiv astro-ph/0703430)Google Scholar
  102. 102.
    W.J.G. de Blok, A. Bosma, High resolution rotation curves of low surface brightness galaxies. Astron. Astrophys. 385, 816 (2002) (arXiv astro-ph/0201276)Google Scholar
  103. 103.
    M.S. Longair, Galaxy Formation (Springer, Berlin, 2008)Google Scholar
  104. 104.
    M. Ross, Dark Matter: the Evidence from Astronomy, Astrophysics and Cosmology (arXiv 1001.0316)Google Scholar
  105. 105.
    K. Garret, G. Duda, Dark matter: a primer. Adv. Astron. 2011, 968283 (2011) (arXiv 1006.2483)Google Scholar
  106. 106.
    P. Schneider, J. Ehlers, E.E. Falco, Gravitational Lenses (Springer, Berlin, 1992)Google Scholar
  107. 107.
    M. Bartelmann, P. Schneider, Weak Gravitational Lensing (arXiv astro-ph/9912508)Google Scholar
  108. 108.
    B. Guinot, Application of general relativity to metrology. Metrologia 34, 261 (1997)ADSCrossRefGoogle Scholar
  109. 109.
    S.G. Turyshev, V.T. Toth, The pioneer anomaly. Liv. Rev. Rel. 13, 4 (2010) (arXiv 1001.3686)Google Scholar
  110. 110.
    C.M. Moller, The Theory of Relativity (Oxford University Press, Oxford, 1957)Google Scholar
  111. 111.
    C.M. Moller, Sur la dinamique des syste’mes ayant un moment angulaire interne. Ann. Inst.H.Poincare’ 11, 251 (1949)Google Scholar
  112. 112.
    N. Stergioulas, Rotating stars in relativity. Liv. Rev. Rel. 6, 3 (2003)MathSciNetGoogle Scholar
  113. 113.
    L. Lusanna, M. Materassi, A canonical decomposition in collective and relative variables of a Klein-Gordon field in the rest-frame Wigner-covariant instant form. Int. J. Mod. Phys. A15, 2821 (2000) (arXiv hep-th/9904202)Google Scholar
  114. 114.
    F. Bigazzi, L. Lusanna, Dirac fields on spacelike hypersurfaces, their rest-frame description and Dirac observables. Int. J. Mod. Phys. A14, 1877 (1999) (arXiv hep-th/9807054)Google Scholar
  115. 115.
    G. Longhi, L. Lusanna, Bound-state solutions, invariant scalar products and conserved currents for a class of two-body relativistic systems. Phys. Rev. D34, 3707 (1986)ADSGoogle Scholar
  116. 116.
    W.G. Dixon, Extended Objects in General Relativity: their Description and Motion, in Isolated Gravitating Systems in General Relativity, ed. by J. Ehlers. Proc. Int. School of Phys. Enrico Fermi LXVII, (North-Holland, Amsterdam, 1979), p. 156Google Scholar
  117. 117.
    W.G. Dixon, Mathisson’s new mechanics: its aims and realisation. Acta Physica Polonica B Proc. Suppl. 1, 27 (2008)Google Scholar
  118. 118.
    W.G. Dixon, Description of extended bodies by multipole moments in special relativity. J. Math. Phys. 8, 1591 (1967)Google Scholar
  119. 119.
    C. Rovelli, Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637 (1996) (quant-ph/9609002)Google Scholar
  120. 120.
    C. Rovelli, M. Smerlak, Relational EPR. Found. Phys. 37, 427 (2007) (quant-ph/0604064)Google Scholar
  121. 121.
    P.M.A. Dirac, Gauge invariant formulation of quantum electrodynamics. Can. J. Phys. 33, 650 (1955)MathSciNetADSzbMATHCrossRefGoogle Scholar
  122. 122.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions. Basic Processes and Applications (Wiley, New York, 1992)Google Scholar
  123. 123.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms. Introduction to Quantum Electrodynamics (Wiley, New York, 1989)Google Scholar
  124. 124.
    G.C. Hegerfeldt, Remark on causality and particle localization. Phys. Rev. D10, 3320 (1974)ADSGoogle Scholar
  125. 125.
    G.C. Hegerfeldt, Violation of causality in relativistic quantum theory? Phys. Rev. Lett. 54, 2395 (1985)Google Scholar
  126. 126.
    A. Einstein, B. Podolski, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)ADSzbMATHCrossRefGoogle Scholar
  127. 127.
    H.R. Brown, Physical Relativity. Space-Time Structure from a Dynamical Perspective (Oxford University Press, Oxford, 2005)Google Scholar
  128. 128.
    J. Butterfield, G. Fleming, Strange Positions, in From Physics to Philosophy, ed. by J. Butterfield, C. Pagonis, (Cambridge University Press, Cambridge, 1999), pp. 108–165Google Scholar
  129. 129.
    L. Lusanna, Classical observables of gauge theories from the multitemporal approach. Contemp. Math. 132, 531 (1992)MathSciNetCrossRefGoogle Scholar
  130. 130.
    L. Lusanna, From Relativistic Mechanics towards Green’s Functions: Multitemporal Dynamics. Proc. VII Seminar on Problems of High Energy Physics and Quantum Field Theory, Protvino 1984 (Protvino University Press, Protvino, 1984)Google Scholar
  131. 131.
    C.G. Torre, M. Varadarajan, Functional evolution of free quantum fields. Class. Quantum Grav. 16, 2651 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  132. 132.
    C.G. Torre, M. Varadarajan, Quantum fields at any time. Phys. Rev. D58, 064007 (1998)Google Scholar
  133. 133.
    L. Cacciapuoti, C. Salomon, ACES: Mission Concept and Scientific Objective, 28/03/2007, ESA document, Estec (\({\text{ ACES }}\_{\text{ Science }}\_{\text{ v1 }}\_{\text{ printout.doc }}\))Google Scholar
  134. 134.
    L. Blanchet, C. Salomon, P. Teyssandier, P. Wolf, Relativistic theory for time and frequency transfer to order \(1/c^3\). Astron. Astrophys. 370, 320 (2000)ADSCrossRefGoogle Scholar
  135. 135.
    L. Lusanna, Dynamical Emergence of 3-Space in General Relativity: Implications for the ACES Mission, in Proceedings of the 42th Rencontres de Moriond Gravitational Waves and Experimental Gravity, La Thuile, Italy, 11–18 March 2007Google Scholar
  136. 136.
    J. Stewart, Advanced General Relativity (Cambridge University Press, Cambridge, 1993)Google Scholar
  137. 137.
    R.M. Wald, General Relativity (Chicago University Press, Chicago, 1984)zbMATHCrossRefGoogle Scholar
  138. 138.
    J.M.M. Senovilla, A Singularity Theorem based on Spatial Averages (arXiv gr-qc/0610127)Google Scholar
  139. 139.
    J.M.M. Senovilla, singularity theorems, their consequences. Gen. Rel. Grav. 30, 701 (1998)Google Scholar
  140. 140.
    H. van Elst, C. Uggla, General relativistic \(1+3\) orthonormal frame approach. Class. Quantum Grav. 14, 2673 (1997)Google Scholar
  141. 141.
    H. Stephani, General Relativity, 2nd edn. (Cambridge University Press, Cambridge, 1996)Google Scholar
  142. 142.
    R. Arnowitt, S. Deser, C.W. Misner, Wave zone in general relativity. Phys. Rev. 121, 1556 (1961)MathSciNetADSzbMATHCrossRefGoogle Scholar
  143. 143.
    K. Thorne, in Gravitational Radiation, ed. by S. Hawking, W. Israel. Three Hundred Years of Gravitation (Cambridge University Press, Cambridge, 1987), pp. 330–458Google Scholar
  144. 144.
    K. Thorne, in The Theory of Gravitational Radiation: An Introductory Review, ed. by N. Deruelle, T. Piran. Gravitational Radiation (North-Holland, Amsterdam, 1983), p. 1Google Scholar
  145. 145.
    K. Thorne, Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52, 299 (1980)Google Scholar
  146. 146.
    L. Blanchet, Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Rel. 9, 4 (2006)Google Scholar
  147. 147.
    L. Blanchet, Post-Newtonian Theory and the Two-Body Problem (arXiv 0907.3596)Google Scholar
  148. 148.
    T. Damour, Gravitational Radiation and the Motion of Compact Bodies, in Gravitational Radiation, ed. by N. Deruelle, T. Piran (North-Holland, Amsterdam, 1983), pp. 59–144Google Scholar
  149. 149.
    T. Damour, The Problem of Motion in Newtonian and Einsteinian Gravity, in Three Hundred Years of Gravitation, ed. by S. Hawking, W. Israel (Cambridge University Press, Cambridge, 1987), pp. 128–198Google Scholar
  150. 150.
    M.E. Pati, C.M. Will, Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: foundations. Phys. Rev. D62, 124015 (2002)Google Scholar
  151. 151.
    M.E. Pati, C.M. Will, II. Two-body equations of motion to second post-Newtonian order and radiation reaction to 3.5 post-Newtonian order. Phys. Rev. D65, 104008 (2002)Google Scholar
  152. 152.
    C. Will, III. Radiaction reaction for binary systems with spinning bodies. Phys. Rev. D71, 084027 (2005)MathSciNetADSGoogle Scholar
  153. 153.
    H. Wang, C. Will IV, Radiation reaction for binary systems with spin-spin coupling. Phys. Rev. D75, 064017 (2007)MathSciNetADSGoogle Scholar
  154. 154.
    T. Mitchell, C. Will, V. Evidence for the strong equivalence principle in second post-Newtonian order. Phys. Rev. D75, 124025 (2007)Google Scholar
  155. 155.
    G. Schaefer, The gravitational quadrupole radiation-reaction force and the canonical formalism of ADM. Ann. Phys. (N.Y.) 161, 81 (1985)Google Scholar
  156. 156.
    G. Schaefer, The ADM Hamiltonian and the postlinear approximation. Gen. Rel. Grav. 18, 255 (1985)Google Scholar
  157. 157.
    T. Ledvinka, G. Schaefer, J. Bicak, Relativistic closed-form Hamiltonian for many-body gravitating systems in the post-Minkowskian approximation. Phys. Rev. Lett. 100, 251101 (2008) (arXiv 0807.0214)Google Scholar
  158. 158.
    Y. Mino, M. Sasaki, T. Tanaka, Gravitational radiation reaction to a particle motion. Phys. Rev. D55, 3457 (1997) (arXiv gr-qc/9606018)Google Scholar
  159. 159.
    T.C. Quinn, R.M. Wald, Phys. Rev. D56, 3381 (1997) (arXiv gr-qc/9610053)Google Scholar
  160. 160.
    S. Detweiler, B.F. Whiting, Self-force via a Green’s function decomposition. Phys. Rev. D67, 024025 (2003) (arXiv gr-qc/0202086)Google Scholar
  161. 161.
    R.M. Wald, Introduction to Gravitational Self-Force (arXiv 0907.0412)Google Scholar
  162. 162.
    S.E. Gralla, R.M. Wald, Derivation of Gravitational Self-Force, in Mass and its Motion, proceedings of the 2008 CNRS School in Orléans/France, ed. by L. Blanchet, A. Spallicci, B. Whiting (Springer, Berlin, 2011) (arXiv 0907.0414)Google Scholar
  163. 163.
    A. Pound, A New Derivation of the Gravitational Self-Force (2009) (arXiv 0907.5197)Google Scholar
  164. 164.
    B.F. Schutz, A First Course in General Relativity (Cambridge University Press, Cambridge, 1985)Google Scholar
  165. 165.
    I. Ciufolini, E.C. Pavlis, A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431, 958 (2004)Google Scholar
  166. 166.
    C.W.F. Everitt, B.W. Parkinson, Gravity Probe B Science Results-NASA Final Report, (http://einstein.stanford.edu/content/final-report/GPB-Final-NASA-Report-020509-web.pdf)
  167. 167.
    S.M. Kopeikin, E.B. Fomalont, Gravitomagnetism, causality and aberration of gravity in the gravitational light-ray deflection experiments. Gen. Rel. Grav. 39, 1583 (2007) (arXiv gr-qc/0510077)Google Scholar
  168. 168.
    S.M. Kopeikin, E.B. Fomalont, Aberration and the fundamental speed of gravity in the Jovian deflection experiment. Found. Phys. 36, 1244 (2006) (arXiv astro-ph/0311063)Google Scholar
  169. 169.
    S.M. Kopeikin, V.V. Makarov, Gravitational bending of light by planetary multipoles and its measurement with microarcsecond astronomical interferometers. Phys. Rev. D75, 062002 (2007) (arXiv astro-ph/0611358)Google Scholar
  170. 170.
    S. Carlip, Model-dependence of Shapiro time delay and the "speed of gravity/speed of light" controversy. Class. Quantum Grav. 21, 3803 (2004) (arXiv gr-qc/0403060)Google Scholar
  171. 171.
    C. Will, Propagation speed of gravity and the relativistic time delay. Astrophys. J. 590, 683 (2003) (arXiv astro-ph/0301145)Google Scholar
  172. 172.
    L. Lindegren, D. Dravins, The fundamental definition of ’radial velocity’. Astron. Astrophys. 401, 1185 (2003) (arXiv astro-ph/0302522)Google Scholar
  173. 173.
    P. Teyssandier, C. Le Poncin-Lafitte, B. Linet, A universal tool for determining the time delay and the frequency shift of light: Synge’s world function. Astrophys. Space Sci. Libr. 349, 153 (2007) (arXiv 0711.0034)Google Scholar
  174. 174.
    P. Teyssandier, C. Le Poncin-Lafitte, General Post-Minkowskian expansion of time transfer functions. Class. Quantum Grav. 25, 145020 (2008) (arXiv 0803.0277)Google Scholar
  175. 175.
    M.H. Bruegmann, Light deflection in the postlinear gravitational filed of bounded pointlike masses. Phys. Rev. D72, 024012 (2005) (arXiv gr-qc/0501095)Google Scholar
  176. 176.
    M. Favata, Post-Newtonian Corrections to the Gravitational-Wave Memory for Quasi-Circular, Inspiralling Compact Binaries (2009) (arXiv 0812.0069)Google Scholar
  177. 177.
    J.L. Jaramillo, J.A.V. Kroon, E. Gourgoulhon, From geometry to numerics: interdisciplinary aspects in mathematical and numerical relativity. Class. Quantum Grav. 25, 093001 (2008)ADSCrossRefGoogle Scholar
  178. 178.
    I. Hinder, The Current Status of Binary Black Hole Simulations in Numerical Relativity (2010) (arXiv 1001.5161)Google Scholar
  179. 179.
    L. Infeld, J. Plebanski, Motion and Relativity (Pergamon, Oxford, 1960)zbMATHGoogle Scholar
  180. 180.
    J.L. Synge, Relativity: The General Theory (North Holland, Amsterdam, 1964)Google Scholar
  181. 181.
    T. Damour, A. Nagar, The Effective One Body Description of the Two-Body Problem (arXiv 0906.1769)Google Scholar
  182. 182.
    T. Damour, Introductory Lectures on the Effective One Body Formalism (arXiv 0802.4047)Google Scholar
  183. 183.
    E. Poisson, The motion of point particles in curved space-time. Living Rev. Rel. 7, 6(2004) (arXiv gr-qc/0306052)Google Scholar
  184. 184.
    E. Poisson, Constructing the Self-Force, in Mass and its Motion, Proceedings of the 2008 CNRS School in Orléans/France, ed. by L. Blanchet, A. Spallicci, B. Whiting (Springer, Berlin, 2011)Google Scholar
  185. 185.
    R. Geroch, J. Traschen, Strings and other distributional sources in general relativity. Phys. Rev. D36, 1017 (1987)MathSciNetADSGoogle Scholar
  186. 186.
    R. Steinbauer, J.A. Vickers, The use of generalized functions and distributions in general relativity. Class. Quantum Grav. 23, R91 (2006) (arXiv gr-qc/0603078)Google Scholar
  187. 187.
    J. Ehlers, E. Rundolph, Dynamics of extended bodies in general relativity: center-of-mass description and quasi-rigidity. Gen. Rel. Grav. 8, 197 (1977)ADSzbMATHCrossRefGoogle Scholar
  188. 188.
    W. Beiglboeck, The center of mass in Einstein’s theory of gravitation. Commun. Math. Phys. 5, 106 (1967)ADSzbMATHCrossRefGoogle Scholar
  189. 189.
    R. Schattner, The center of mass in general relativity. Gen. Rel. Grav. 10, 377 (1978)MathSciNetADSCrossRefGoogle Scholar
  190. 190.
    R. Schattner, The uniqueness of the center of mass in general relativity. Gen. Rel. Grav. 10, 395 (1979)Google Scholar
  191. 191.
    J. Ehlers, R. Geroch, Equation of motion of small bodies in relativity. Ann. Phys. 309, 232 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  192. 192.
    S. Kopeikin, I. Vlasov, Parametrized post-Newtonian theory of reference frames, multipolar expansions and equations of motion in the N-body problem. Phys. Rep. 400, 209 (2004) (arXiv gr-qc/0403068)Google Scholar
  193. 193.
    J. Steinhoff, D. Puetzfeld, Multipolar Equations of Motion for Extended Test Bodies in General Relativity (arXiv 0909.3756)Google Scholar
  194. 194.
    A. Barducci, R. Casalbuoni, L. Lusanna, Energy-momentum tensor of extended relativistic systems. Nuovo Cim. 54A, 340 (1979)MathSciNetADSCrossRefGoogle Scholar
  195. 195.
    G. Schaefer, Post-Newtonian Methods: Analytic Results on the Binary Problem, in Mass and Motion in General Relativity, Proceedings of the 2008 CNRS School in Orleans/France, ed. by L. Blanchet, A. Spallicci, B. Whiting (Springer, Berlin, 2011) (arXiv 0910.2857)Google Scholar
  196. 196.
    G. Schaefer, The gravitational quadrupole radiation-reaction force and the canonical formalism of ADM. Ann. Phys. (N.Y.) 161, 81 (1985)Google Scholar
  197. 197.
    G. Schaefer, The ADM Hamiltonian and the postlinear approximation. Gen. Rel. Grav. 18, 255 (1985)Google Scholar
  198. 198.
    C.M. Will, On the Unreasonable Effectiveness of the Post-Newtonian Approximation in Gravitational Physics (arXiv 1102.5192)Google Scholar
  199. 199.
    C. Moni Bidin, G. Carraro, G.A. Me’ndez, W.F. van Altena, No Evidence for a Dark Matter Disk within 4 kpc from the Galactic Plane (arXiv 1011.1289)Google Scholar
  200. 200.
    M. Milgrom, New Physics at Low Accelerations (MOND): An Alternative to Dark Matter (arXiv 0912.2678)Google Scholar
  201. 201.
    S. Capozziello, V.F. Cardone, A. Troisi, Low surface brightness galaxies rotation curves in the low energy limit of \(R^n\) gravity : no need for dark matter? Mon. Not. R. Astron. Soc. 375, 1423 (2007) (arXiv astro-ph/0603522)Google Scholar
  202. 202.
    J.L. Feng, Dark Matter Candidates from Particle Physics and Methods of Detection (arXiv 1003.0904)Google Scholar
  203. 203.
    F.I. Cooperstock, S. Tieu, General relativistic velocity: the alternative to dark matter. Mod. Phys. Lett. A23, 1745 (2008) (arXiv 0712.0019)Google Scholar
  204. 204.
    G.F.R. Ellis, H. van Elst, Cosmological Models, Cargese Lectures 1998, NATO Adv. Stud. Inst. Ser. C. Math. Phys. Sci. 541, 1 (1999) (arXiv gr-qc/9812046)Google Scholar
  205. 205.
    G.F.R. Ellis, Inhomogeneity Effects in Cosmology (arXiv 1103.2335)Google Scholar
  206. 206.
    C. Clarkson, G. Ellis, A. Faltenbacher, R. Maartens, O. Umeh, J.P. Uzan,(Mis-)Interpreting Supernovae Observations in a Lumpy Universe (arXiv 1109.2484)Google Scholar
  207. 207.
    T. Buchert, G.F.R. Ellis, The universe seen at different scales. Phys. Lett. A347, 38 (2005) (arXiv gr-qc?0506106)Google Scholar
  208. 208.
    R. Maartens, Is the Universe Homogeneous? (arXiv 1104.1300)Google Scholar
  209. 209.
    C.G. Tsagas, A. Challinor, R. Maartens, Relativistic cosmology and large-scale structure. Phys. Rep. 465, 61 (2008) (arXiv 0705.4397)Google Scholar
  210. 210.
    C. Clarkson, R. Maartens, Inhomogeneity and the foundations of concordance cosmology. Class. Quantum Grav. 27, 124008 (arXiv 1005.2165)Google Scholar
  211. 211.
    R. Durrer, What do we really Know about Dark Energy? (arXiv 1103.5331)Google Scholar
  212. 212.
    C. Bonvin, R. Durrer, What Galaxy Surveys Really Measure (arXiv 1105.5280)Google Scholar
  213. 213.
    K. Nakamura, Second-order gauge-invariant cosmological perturbation theory: current status. Adv. Astron. 2010, 576273 (2010) (arXiv 1001.2621)Google Scholar
  214. 214.
    W.B. Bonnor, A.H. Sulaiman, N. Tanimura, Szekeres’s space-times have no Killing vectors. Gen. Rel. Grav. 8, 549 (1977)Google Scholar
  215. 215.
    B.K. Berger, D.M. Eardley, D.W. Olson, Notes on the spacetimes of Szekeres. Phys. Rev. D16, 3086 (1977)MathSciNetADSGoogle Scholar
  216. 216.
    A. Nwankwo A., M. Ishak, J. Thomson, Luminosity Distance and Redshift in the Szekeres Inhomogeneous Cosmological Models (arXiv 1005.2989)Google Scholar
  217. 217.
    J. Pleban’ski, A. Krasin’ski, An Introduction to General Relativity and Cosmology (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  218. 218.
    M.N. Celerier, Effects of Inhomogeneities on the Expansion of the Universe: a Challenge to Dark Energy? (arXiv 1203.2814)Google Scholar
  219. 219.
    T. Buchert, Dark energy from structure: a status report. Gen. Rel. Grav. 40, 467 (2008) (arXiv 0707.2153)Google Scholar
  220. 220.
    A. Wiegand, T. Buchert, Multiscale cosmology and structure-emerging dark energy: a plausibility analysis. Phys. Rev. D82, 023523 (2010) (arXiv 1002.3912)Google Scholar
  221. 221.
    J. Larena, Spatially averaged cosmology in an arbitrary coordinate system. Phys. Rev. D79, 084006 (2009) (arXiv 0902.3159)Google Scholar
  222. 222.
    R.J. van den Hoogen, Averaging Spacetime: Where do we go from here? (arXiv 1003.4020)Google Scholar
  223. 223.
    S. Räsänen, Backreaction: directions of progress. Class. Quantum Grav. 28, 164008 (2011) (arXiv 1102.0408)Google Scholar
  224. 224.
    T. Buchert, S. Räsänen, Backreaction in late-time cosmology. Ann. Rev. Nucl. Particle Sci. (invited review) (arXiv 1112.5335)Google Scholar
  225. 225.
    D.L. Wiltshire, What is Dust? Physical Foundations of the Averaging Problem in Cosmology (arXiv 1106.1693)Google Scholar
  226. 226.
    A. Ashtekar, New Perspectives in Canonical Gravity (Bibliopolis, Napoli, 1988)zbMATHGoogle Scholar
  227. 227.
    M. Henneaux, J.E. Nelson, C. Schomblond, Derivation of Ashtekar variables from tetrad gravity. Phys. Rev. D39, 434 (1989)MathSciNetADSGoogle Scholar
  228. 228.
    T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge University Press, Cambridge, 2007)zbMATHCrossRefGoogle Scholar
  229. 229.
    P. Dona’, S. Speziale, Introductory Lectures to Loop Quantum Gravity (arXiv 1007.0402)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Sezione INFN di FirenzePolo ScientificoSesto FiorentinoItaly

Personalised recommendations