Advertisement

Data Structures for Continuous Generalisation: tGAP and SSC

  • Peter van Oosterom
  • Martijn Meijers
  • Jantien Stoter
  • Radan Šuba
Chapter
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

Spatial zoom and thematic navigation are indispensable functionalities for digital web and mobile maps. Therefore, recent map generalisation research has introduced the first truly smooth vario-scale structure (after several near vario-scale representations), which supports continuous or smooth zooming. In the implementation, the vario-scale representation of 2D geo-information can be stored as a single 3D (2D+scale) data structure. A single uniform scale map in 2D is then derived by computing a horizontal slice through the structure.

Keywords

Region Constraint Line Simplification Progressive Transfer Continuous Generalisation Area Partitioning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research is supported by the Dutch Technology Foundation STW (project numbers 11,300 and 11,185), which is part of the Netherlands Organisation for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs.

Many thanks to all students and colleague researchers involved in the development of the vario-scale tGAP concepts: Vincent Schenkelaars, Judith van Putten, Tinghua Ai, Maarten Vermeij, Arjen Hofman, Arta Dilo, Marian de Vries and Jan-Henrik Haunert. Thanks to Wilko Quak, Edward Verbree, and Rod Thompson for a critical review of parts of draft version of this text. Finally, authors would like to thank the editors of this book for the initiative and for, together with the anonymous reviewers, providing many constructive suggestions on the earlier versions of this chapter. Special thanks to William Mackaness for his meticulous English proof reading and spotting unclear sections. All comments were of great help, but all (remaining) errors are the sole fault of the authors.

References

  1. Ai T, van Oosterom P (2002) GAP-tree extensions based on Skeletons. Paper presented at the advances in spatial data handling, 10th international symposium on spatial data handling, Ottawa, Canada, 9–12 July 2002Google Scholar
  2. Ballard DH (1981) Strip trees: a hierarchical representation for curves. Commun Assoc Comput Mach 14(5):310–321. doi: 10.1145/358645.358661 Google Scholar
  3. Been K, Nöllenburg M, Poon S-H, Wolff A (2010) Optimizing active ranges for consistent dynamic map labeling. Comput Geom 43(3):312–328CrossRefGoogle Scholar
  4. Bertolotto M, Egenhofer MJ (2001) Progressive transmission of vector map data over the World Wide Web. Geoinformatica 5(4):345–373. doi: 10.1023/a:1012745819426 CrossRefGoogle Scholar
  5. Bregt A, Bulens J (1996) Application oriented generalization of area objects. M Methods for the generalization of geo-databases. Netherlands Geodetic Commission, Delft, The Netherlands, pp 57–64Google Scholar
  6. Buttenfield B (2002) Transmitting vector geospatial data across the internet. In: Egenhofer M, Mark D (eds) Geographic information science, vol 2478. Lecture notes in computer science. Springer Berlin Heidelberg, pp 51–64. doi: 10.1007/3-540-45799-2_4
  7. Cecconi A, Galanda M (2002) Adaptive zooming in web cartography. Comput Graph Forum 21(4):787–799. doi: 10.1111/1467-8659.00636 CrossRefGoogle Scholar
  8. DMA USDMA (1986) Defense Mapping Agency product specifications for digital feature analysis data (DFAD) Level 1-C and Level 3-C (DFAD): level 1 and level 2. DMA Aerospace Center, St. Louis, MoGoogle Scholar
  9. Douglas DH, Peucker TK (1973) Algorithms for the reduction of the number of points required to represent a line or its caricature. Cartographica: Int J Geograph Inf Geovisual 10(2):112–122. doi: 10.3138/FM57-6770-U75U-7727
  10. Gunther O (1988) Efficient structures for geometric data management, vol 337. Lecture notes in computer science. Springer, Berlin Google Scholar
  11. Guttman A (1984) R-trees: a dynamic index structure for spatial searching. SIGMOD Rec 14(2):47–57. doi: 10.1145/971697.602266 CrossRefGoogle Scholar
  12. Hägerstrand T (1970) What about people in regional science? Pap Reg Sci 24(1):6–21CrossRefGoogle Scholar
  13. Hampe M, Sester M, Harrie L (2004) Multiple representation databases to support visualization on mobile devices. In: Proceedings of the 20th ISPRS congress, vol 35 of international archives of photogrammetry, remote sensing and spatial information sciences, Istanbul, Turkey, vol 35(6), pp 135–140Google Scholar
  14. Harrie L, Sarjakoski T, Lehto L (2002) A variable-scale map for small-display cartography. Int Arch Photogrammetry Remote Sens Spat Inf Sci 34(4):237–242Google Scholar
  15. Haunert J-H, Wolff A (2006) Generalization of land cover maps by mixed integer programming. Paper presented at the proceedings of the 14th annual ACM international symposium on advances in geographic information systems, Arlington, Virginia, USAGoogle Scholar
  16. Haunert J-H, Dilo A, van Oosterom P (2009) Constrained set-up of the tGAP structure for progressive vector data transfer. Comput Geosci 35(11):2191–2203CrossRefGoogle Scholar
  17. Hildebrandt J, Owen M, Hollamby R (2000) CLUSTER RAPTOR: dynamic geospatial imagery visualisation using backend repositories. In: Proceedings of the 5th international command and control research and technology symposium (ICCRTS) 2000Google Scholar
  18. Hofman A (2008) Developing a vario-scale IMGeo using the constrained tGAP structure. MSc thesis geomatics, Technical Delft UniversityGoogle Scholar
  19. Jones CB, Abraham IM (1987) Line generalisation in a global cartographic database. Cartographica: Int J Geograph Inf Geovisual 24(3):32–45. doi: 10.3138/0666-1648-61L4-3164
  20. Jones C, Abdelmoty A, Lonergan M, van der Poorten P, Zhou S (2000) Multi-scale spatial database design for online generalisation. In: 9th international symposium on spatial data handling, pp 34–44Google Scholar
  21. Kreveld M (2001) Smooth generalization for continuous zooming. In: Proceedings of 20th international cartographic conference, Beijing (China), pp 2180–2185Google Scholar
  22. Lazaridis I, Mehrotra S (2001) Progressive approximate aggregate queries with a multi-resolution tree structure. Paper presented at the proceedings of the 2001 ACM SIGMOD international conference on management of data, Santa Barbara, California, USAGoogle Scholar
  23. Meijers M (2011) Simultaneous and topologically safe line simplification for a variable-scale planar partition. In: Geertman S, Reinhardt W, Toppen F (eds) Advancing geoinformation science for a changing world. Lecture notes in geoinformation and cartography. Springer Berlin Heidelberg, pp 337–358. doi: 10.1007/978-3-642-19789-5_17
  24. Meijers M, van Oosterom P (2011) The space-scale cube: an integrated model for 2D polygonal areas and scale. Paper presented at the 28th urban data management symposium, volume 38 of international archives of photogrammetry, remote sensing and spatial information sciencesGoogle Scholar
  25. Meijers M, van Oosterom P, Quak W (2009) A storage and transfer efficient data structure for variable scale vector data. In: Sester M, Bernard L, Paelke V (eds) Advances in GIscience. Lecture notes in geoinformation and cartography. Springer Berlin Heidelberg, pp 345–367. doi: 10.1007/978-3-642-00318-9_18
  26. Noguera JM, Segura RJ, Ogáyar CJ, Joan-Arinyo R (2011) Navigating large terrains using commodity mobile devices. Comput Geosci 37(9):1218–1233. doi: 10.1016/j.cageo.2010.08.007 CrossRefGoogle Scholar
  27. Pu S, Zlatanova S (2006) Integration of GIS and CAD at DBMS level. In: Proceedings of UDMS 2006, pp 9.61–69.71Google Scholar
  28. Rosenbaum R, Schumann H (2004) Remote raster image browsing based on fast content reduction for mobile environments. Paper presented at the proceedings of the seventh Eurographics conference on multimedia, Nanjing, ChinaGoogle Scholar
  29. Samet H (1984) The quadtree and related hierarchical data structures. ACM Comput Surv Arch 16(2):187–260. doi: 10.1145/356924.356930 CrossRefGoogle Scholar
  30. Sester M, Brenner C (2005) Continuous generalization for visualization on small mobile devices. In: Developments in spatial data handling. Springer, Berlin Heidelberg, pp 355–368. doi: 10.1007/3-540-26772-7_27
  31. Stoter J, Meijers M, van Oosterom P, Grünreich D, Kraak M-J (2010) Applying DLM and DCM concepts in a multi-scale data environment. In: Buttenfield BP, Brewer CA, Clarke KC, Finn MP, Usery EL (eds) Proceedings of GDI 2010: symposium on generalization and data integration 2010, pp 1–7Google Scholar
  32. Thompson RM, van Oosterom P (2012) Modelling and validation of 3D cadastral objects. Urban and regional data management—UDMS annual 2011, pp 7–23Google Scholar
  33. van Oosterom P (1986, 1989) A reactive data structure for geographic information systems. In: AutoCarto 9, Baltimore, Maryland, pp 665–674Google Scholar
  34. van Oosterom P (1990) Reactive data structures for geographic information systems. PhD Theses, Department of Computer Science, Leiden University, The NetherlandsGoogle Scholar
  35. van Oosterom P (1992) A storage structure for a multi-scale database: the reactive-tree. Comput Environ Urban Syst 16(3):239–247. doi: 10.1016/0198-9715(92)90036-Q CrossRefGoogle Scholar
  36. van Oosterom P (1993) The GAP-tree, an approach to “On-the-Fly” map generalization of an area partitioning. GIS and generalization, methodology and practice. Taylor & Francis, LondonGoogle Scholar
  37. van Oosterom P (1994) Reactive data structures for geographic information systems. Oxford University Press, Inc.Google Scholar
  38. van Oosterom P (2005) Variable-scale topological data structures suitable for progressive data transfer: The GAP-face tree and GAP-edge forest. Cartogr Geogr Inf Sci 32(4):331–346. doi: 10.1559/152304005775194782 CrossRefGoogle Scholar
  39. van Oosterom P, Meijers M (2011a) Method and system for generating maps in an n-dimensional space. Dutch patent application 2006630, filed 19 April 2011, published October 2012Google Scholar
  40. van Oosterom P, Meijers M (2011b) Towards a true vario-scale structure supporting smooth-zoom. In: Proceedings of 14th ICA/ISPRS workshop on generalisation and multiple representation 2011, pp 1–19Google Scholar
  41. van Oosterom P, Schenkelaars V (1995) The development of an interactive multi-scale GIS. Int J Geogr Inf Syst 9(5):489–507. doi: 10.1080/02693799508902052 CrossRefGoogle Scholar
  42. van Oosterom P, Stoter J (2010) 5D data modelling: full integration of 2D/3D space, time and scale dimensions. Paper presented at the proceedings of the 6th international conference on geographic information science 2010, Zurich, SwitzerlandGoogle Scholar
  43. van Oosterom P, Stoter J, Quak W, Zlatanova S (2002) The balance between geometry and topology. In: Richardson D, van Oosterom P (eds) 10th international symposium on spatial data handling. Springer, Berlin, pp 121–135. doi: 10.1007/978-3-642-56094-1_16
  44. van Putten J, van Oosterom P (1998) New results with generalized area partitionings. In: Proceedings 8th international symposium on spatial data handling 1998, pp 485–495Google Scholar
  45. van Smaalen JWM (1996) A hierarchic rule model for geographic information abstraction. In: Proceedings, SDH’96, Delft, The Netherlands, p 4b.31Google Scholar
  46. van Smaalen JWM (2003) Automated aggregation of geographic objects—a new approach to the conceptual generalisation of geographic databases. PhD Theses, Wageningen University, The NetherlandsGoogle Scholar
  47. Vermeij M, van Oosterom P, Quak W, Tijssen (2003) T Storing and using scale-less topological data efficiently in a client-server DBMS environment. In: Proceedings of the 7th international conference on geocomputation, pp 1–11Google Scholar
  48. Zhou X, Prasher S, Sun S, Xu K (2004) Multiresolution spatial databases: making web based spatial applications faster. In: Proceedings of the 6th Asia-Pacific web conference, APWeb. Springer, pp 36-47Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Peter van Oosterom
    • 1
  • Martijn Meijers
    • 1
  • Jantien Stoter
    • 1
  • Radan Šuba
    • 1
  1. 1.Section GIS TechnologyDepartment OTB, Faculty of Architecture and the Built Environment, Delft University of TechnologyDelftThe Netherlands

Personalised recommendations