Exploring Space-Time Tradeoffs in Autonomous Sampling for Marine Robotics

  • Rishi Graham
  • Frédéric Py
  • Jnaneshwar Das
  • Drew Lucas
  • Thom Maughan
  • Kanna Rajan
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 88)


In the coastal ocean, biological and physical dynamics vary on spatiotemporal scales spanning many orders of magnitude. At large spatial (O(100km)) and temporal (O(weeks to months)) scales, traditional shipboard and moored measurements are very effective at quantifying mean and varying oceanic properties. At scales smaller than the internal Rossby radius (O(10km) for typical coastal stratification at mid-latitude), horizontal, vertical and temporal inhomogeneity is the rule rather than the exception.


Ground Truth Autonomous Underwater Vehicle Correlation Kernel Eulerian Space Lagrangian Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferrari, R.: A Frontal Challenge for Climate Models. Science 332, 316–317 (2011)CrossRefGoogle Scholar
  2. 2.
    D’Asaro, E., Lee, C., Rainville, L., Harcourt, R., Thomas, L.: Enhanced turbulence and energy dissipation at ocean fronts. Science 10 (March 2011)Google Scholar
  3. 3.
    Barth, J., Herbert, D., Dale, A., Ullman, D.: Direct observations of along-isopycnal upwelling and diapycnal velocity at a shelfbreak front. J. Physical Oceanography 34, 543–565 (2004)CrossRefGoogle Scholar
  4. 4.
    Levy, M.: Mesoscale variability of phytoplankton and of new production: Impact of the large-scale nutrient distribution. J. Geophysical Research-Oceans 108 (2003)Google Scholar
  5. 5.
    Levy, M., Klein, P., Jelloul, M.B.: New production stimulated by high-frequency winds in a turbulent mesoscale eddy field. Geophysical Research Letters 36 (2009)Google Scholar
  6. 6.
    Pallás-Sanz, E., Johnston, T.M.S., Rudnick, D.L.: Frontal dynamics in a California Current System shallow front: 1. Frontal processes and tracer structure. J. Geophysical Research 115 (2010)Google Scholar
  7. 7.
    Barth, J., Cowles, T., Kosro, P., Shearman, R., Huyer, A., Smith, R.: Injection of carbon from the shelf to offshore beneath the euphotic zone in the california current. J. Geophysical Research-Oceans 107 (2002)Google Scholar
  8. 8.
    Franks, P.J.: Sink or swim: accumulation of biomass at fronts. Marine Ecology Progress Series, vol. 82, pp. 1–12 (1992)Google Scholar
  9. 9.
    CANON: Controlled, Agile and Novel Observing Network,
  10. 10.
    McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., McEwen, R.: A Deliberative Architecture for AUV Control. In: Intnl. Conf. on Robotics and Automation (ICRA), Pasadena (May 2008)Google Scholar
  11. 11.
    McGann, C., Py, F., Rajan, K., Ryan, J.P., Henthorn, R.: Adaptive Control for Autonomous Underwater Vehicles. In: Proceedings of Assoc. for the Advancement of AI National Conference, Chicago, IL (2008)Google Scholar
  12. 12.
    McGann, C., Py, F., Rajan, K., Ryan, J.P., Thomas, H., Henthorn, R., McEwen, R.: Preliminary Results for Model-Based Adaptive Control of an Autonomous Underwater Vehicle. In: Intnl. Symp. on Experimental Robotics (ISER), Athens (2008)Google Scholar
  13. 13.
    Py, F., Rajan, K., McGann, C.: A Systematic Agent Framework for Situated Autonomous Systems. In: 9th International Conf. on Autonomous Agents and Multiagent Systems, Toronto, Canada (May 2010)Google Scholar
  14. 14.
    Rajan, K., Py, F.: T-REX: Partitioned Inference for AUV Mission Control. In: Roberts, G.N., Sutton, R. (eds.) Further Advances in Unmanned Marine Vehicles. IEE (2012) (to be Published)Google Scholar
  15. 15.
    Cressie, N.A.C.: Statistics for spatial data. Wiley Interscience (1993)Google Scholar
  16. 16.
    Das, J., Py, F., Maughan, T., O’Reilly, T., Messie, M., Ryan, J., Rajan, K., Sukhatme, G.: Simultaneous Tracking and Sampling of Dynamic Oceanographic Features with Autonomous Underwater Vehicles and Lagrangian Drifters. In: Intnl. Symp. on Experimental Robotics (ISER), New Delhi, India (2010)Google Scholar
  17. 17.
    Das, J., Py, F., Maughan, T., Messie, M., O’Reilly, T., Ryan, J., Sukhatme, G.S., Rajan, K.: Coordinated Sampling of Dynamic Oceanographic Features with AUVs and Drifters. Intnl. J. of Robotics Research 31, 626–646 (2012)CrossRefGoogle Scholar
  18. 18.
    Rainville, L., Pinkel, R.: Wirewalker: An autonomous wave-powered vertical profiler. J. Atmos. and Ocean. Technology 18, 1048–1051 (2001)CrossRefGoogle Scholar
  19. 19.
    Pinkel, R., Goldin, M.A., Smith, J.A., Sun, O.M., Aja, A.A., Bui, M.N., Hughen, T.: The Wirewalker: A Vertically Profiling Instrument Carrier Powered by Ocean Waves. J. Atmos. and Ocean. Technology 28(3), 426–435 (2011)CrossRefGoogle Scholar
  20. 20.
    Chavez, F.P., Pennington, J.T., Herlien, R., Jannasch, H., Thurmond, G., Friederich, G.E.: Moorings and Drifters for Real-Time Interdisciplinary Oceanography. Journal of Atmospheric and Oceanic Technology 14(5), 1199–1211 (1997)CrossRefGoogle Scholar
  21. 21.
    Molcard, A., Piterbarg, L.I., Griffa, A., Ozgokmen, T.M., Mariano, A.: Assimilation of drifter observations for the reconstruction of the eulerian circulation field. J. Geophys. Res. 108(C3), 11–121 (2003)CrossRefGoogle Scholar
  22. 22.
    Salman, H., Jones, C., Ide, K.: Using Flow Geometry for Drifter Deployment in Lagrangian data assimilation. Tellus 60A, 321–335 (2008)Google Scholar
  23. 23.
    Rudnick, D., Perry, M.: ALPS: Autonomous and Lagrangian Platforms and Sensors, Workshop Report. Tech. Rep. (2003),
  24. 24.
    Zhang, Y., Bellingham, J.G.: An efficient method of selecting ocean observing locations for capturing the leading modes and reconstructing the full field. Journal of Geophysical Research 113(C4) (April 2008)Google Scholar
  25. 25.
    Wikle, C.K.: Spatio-temporal Methods in Climatology, pp. 1–12 (September 2011)Google Scholar
  26. 26.
    Dou, Y., Le, N.D., Zidek, J.V.: Bayesian Empirical Orthogonal Functions. Tech. Rep. (January 2009)Google Scholar
  27. 27.
    Zhang, Y., Baggeroer, A.B., Bellingham, J.G.: Spectral-Feature Classification of Oceanographic Processes Using an Autonomous Underwater Vehicle. IEEE Journal of Ocean Engineering 26(4), 726–741 (2001)CrossRefGoogle Scholar
  28. 28.
    Handcock, M.S., Stein, M.L.: A Bayesian Analysis of Kriging. Technometrics 35(4), 403–410 (1993)CrossRefGoogle Scholar
  29. 29.
    Wikle, C.K.: Hierarchical Models in Environmental Science. International Statistical Review 71(2), 181–199 (2003)MATHCrossRefGoogle Scholar
  30. 30.
    Cressie, N., Calder, C.A., Clark, J.S., Hoef, J.M.V., Wikle, C.K.: Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecological Applications 19(3), 553–570 (2009)CrossRefGoogle Scholar
  31. 31.
    Amani, A., Lebel, T.: Lagrangian kriging for the estimation of Sahelian rainfall at small time steps. Journal of Hydrology 192, 125–157 (1997)CrossRefGoogle Scholar
  32. 32.
    Seed, A.W., Bowler, N.: A Model to Generate Stochastic Nowcasts of Rainfall. In: AMS 31st International Conference on Radar Meteorology (August 2003)Google Scholar
  33. 33.
    Seed, A.W.: A Dynamic and Spatial Scaling Approach to Advection Forecasting. American Meteorological Society 42(3), 381–388 (2003)Google Scholar
  34. 34.
    Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Medical Image Analysis 5, 143–156 (2001)CrossRefGoogle Scholar
  35. 35.
    Gneiting, T., Genton, M.G., Guttorp, P.: Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry. In: Finkenstaedt, B., Held, L., Isham, V. (eds.) Statistical Methods for Spatio-Temporal Systems, pp. 151–175 (2006)Google Scholar
  36. 36.
    Taylor, G.I.: The Spectrum of Turbulence. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 164(919), 476–490 (1938)CrossRefGoogle Scholar
  37. 37.
    Genton, M.G.: Separable approximations of space-time covariance matrices. Environmetrics 18(7), 681–695 (2007)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Bevilacqua, M., Mateu, J., Porcu, E., Zhang, H., Zini, A.: Weighted composite likelihood-based tests for space-time separability of covariance functions. Statistics and Computing 20(3), 283–293 (2009)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Fuentes, M.: Testing for separability of spatial–temporal covariance functions. Journal of Statistical Planning and Inference 136, 447–466 (2006)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Mitchell, M.W., Genton, M.G., Gumpertz, M.L.: A likelihood ratio test for separability of covariances. Journal of Multivariate Analysis 97(5), 1025–1043 (2006)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Stein, M.L.: Space-Time Covariance Functions. Journal of the American Statistical Association 100(469), 1–13 (2005)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Abrahamsen, P.: A Review of Gaussian Random Fields and Correlation Functions, Oslo, Norway, Tech. Rep. (April 1997)Google Scholar
  43. 43.
    Belkin, I.M., Cornillon, P.C., Sherman, K.: Fronts in large marine ecosystems. Progress in Oceanography 81(1-4), 223–236 (2009), Comparative Marine Ecosystem Structure and Function: Descriptors and CharacteristicsCrossRefGoogle Scholar
  44. 44.
    Das, J., Maughan, T., McCann, M., Godin, M., O’Reilly, T., Messie, M., Bahr, F., Gomes, K., Py, F., Bellingham, J., Sukhatme, G., Rajan, K.: Towards mixed-initiative, multi-robot field experiments: Design, deployment, and lessons learned. In: Proc. Intelligent Robots and Systems (IROS), San Francisco, California (2011)Google Scholar
  45. 45.
    Das, J., Py, F., Maughan, T., Messie, M., O’Reilly, T., Ryan, J., Sukhatme, G.S., Rajan, K.: Coordinated sampling of dynamic oceanographic features with auvs and drifters. In: Proc. IROS Workshop on Robotics for Environmental Monitoring (WREM 2011), San Francisco, California (2011)Google Scholar
  46. 46.
    Lucas, A., Dupont, C.L., Tai, V., Largier, J.L., Palenik, B., Franks, P.J.S.: The Green Ribbon: Multiscale physical control of phytoplankton productivity and community structure over a narrow continental shelf. Limnology & Oceanography 56, 611–626 (2011)CrossRefGoogle Scholar
  47. 47.
    Lucas, A., Franks, P.J.S., Dupont, C.L.: Horizontal Internal-tide Fluxes support elevated phytoplankton productivity over the inner continental shelf. Limnology & Oceanography: Fluids & Environments 1, 56–74 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Rishi Graham
    • 1
  • Frédéric Py
    • 1
  • Jnaneshwar Das
    • 2
  • Drew Lucas
    • 3
  • Thom Maughan
    • 1
  • Kanna Rajan
    • 1
  1. 1.Monterey Bay Aquarium Research InstituteMoss LandingUSA
  2. 2.Dept. of Computer ScienceUniv. of Southern CaliforniaLos AngelesUSA
  3. 3.Dept. of Marine SciencesUniv. of CaliforniaSanta CruzUSA

Personalised recommendations