Experimental Robotics pp 273-288

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 88) | Cite as

State Estimation for Indoor and Outdoor Operation with a Micro-Aerial Vehicle

Abstract

In this work, we detail a methodology for estimating the state of a microaerial vehicle (MAV) as it transitions between different operating environments with varying applicable sensors. We ensure that the estimate is smooth and continuous throughout and provide an associated quality measure of the state estimate. We address the challenge of maintaining consistency between local and global measurements and propose a strategy to recursively estimate the transform between different coordinate frames. We close with experiments that validate the approach and the resulting performance as a MAV navigates between mixed indoor and outdoor environments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shen, S., Michael, N., Kumar, V.: Autonomous multi-floor indoor navigation with a computationally constrained MAV. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Shanghai, China, pp. 20–25 (May 2011)Google Scholar
  2. 2.
    Julier, S.J., Uhlmann, J.K.: A new extension of the kalman filter to nonlinear systems. In: Kadar, I. (ed.) Proc. of SPIE, vol. 3068, pp. 182–193 (July 1997)Google Scholar
  3. 3.
    Merwe, R.V.D., Wan, E.A., Julier, S.I.: Sigma-point kalman filters for nonlinear estimation: Applications to integrated navigation. In: Proc. of AIAA Guidance, Navigation, and Controls Conf., Providence, RI (August 2004)Google Scholar
  4. 4.
    Grzonka, S., Grisetti, G., Burgard, W.: Towards a navigation system for autonomous indoor flying. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Kobe, Japan, pp. 2878–2883 (May 2009)Google Scholar
  5. 5.
    Bachrach, A.G.: Autonomous flight in unstructured and unknown indoor environments. Master’s thesis, MIT, Cambridge, MA (September 2009)Google Scholar
  6. 6.
    Blösch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based MAV navigation in unknown and unstructured environments. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Anchorage, AK, pp. 21–28 (May 2010)Google Scholar
  7. 7.
    Carlson, J.: Mapping large urban environments with GPS-aided SLAM. Ph.D. dissertation, CMU, Pittsburgh, PA (July 2010)Google Scholar
  8. 8.
    Schleicher, D., Bergasa, L.M., Ocaña, M., Barea, R., López, E.: Real-time hierarchical GPS aided visual SLAM on urban environments. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Kobe, Japan, pp. 4381–4386 (May 2009)Google Scholar
  9. 9.
    Moore, D.C., Huang, A.S., Walter, M., Olson, E.: Simultaneous local and global state estimation for robotic navigation. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Kobe, Japan, pp. 3794–3799 (May 2009)Google Scholar
  10. 10.
    Weinmann, A.: Uncertain Models and Robust Control. Springer, New York (1991)CrossRefGoogle Scholar
  11. 11.
    Bosse, M., Newman, P., Leonard, J., Soika, M., Feiten, W., Teller, S.: An atlas framework for scalable mapping. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Taipei, Taiwan, vol. 2, pp. 1899–1906 (September 2003)Google Scholar
  12. 12.
    Estrada, C., Neira, J., Tardos, J.D.: Hierarchical SLAM: Real-time accurate mapping of large environments. IEEE Trans. Robot. 21(4), 588–596 (2005)CrossRefGoogle Scholar
  13. 13.
    Dellaert, F., Kaess, M.: Square root SAM: Simultaneous localization and mapping via square root information smoothing. Intl. J. Robot. Research 25(12), 1181–1203 (2006)MATHCrossRefGoogle Scholar
  14. 14.
    Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: Incremental smoothing and mapping. IEEE Trans. Robot. 24(6), 1365–1378 (2008)CrossRefGoogle Scholar
  15. 15.
    Censi, A.: On achievable accuracy for pose tracking. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Kobe, Japan, pp. 1–7 (May 2009)Google Scholar
  16. 16.
    Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationships in robotics. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Rayleigh, NC, vol. 4, p. 850 (March 1987)Google Scholar
  17. 17.
    Dryanovski, I., Morris, W., Jizhong, X.: Multi-volume occupancy grids: An efficient probabilistic 3d mapping model for micro aerial vehicles. In: Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., Taipei, Taiwan, pp. 1553–1559 (October 2010)Google Scholar
  18. 18.
    Olson, E.: Real-time correlative scan matching. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Kobe, Japan, pp. 4387–4393 (May 2009)Google Scholar
  19. 19.
    Ascending Technologies, GmbH (February 2012), http://www.asctec.de/
  20. 20.
    Robot Operating System (February 2012), http://www.ros.org/

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.GRASP LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations