Intrablocks Correspondence Analysis

  • Campo Elías PardoEmail author
  • Jorge Eduardo Ortiz
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


We propose a new method to describe contingency tables with double partition structures in columns and rows. Furthermore, we propose new superimposed representations, based on the introduction of variable dilations for the partial clouds associated with the partitions of the columns and the rows. We illustrate our contributions with the analysis of some mortality data in Spanish regions.


Correspondence Analysis Canary Island Premature Mortality Independence Model Factorial Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This document is derived from the first author’s doctoral dissertation in Statistics at the Universidad Nacional de Colombia. The calculations were performed with the R package pamctdp, available on CRAN. We thank the reviewers for their suggestions and corrections.


  1. Bécue, M., Pagès, J., & Pardo, C. (2005). Contingency table with a double partition on rows and columns. Visualization and comparison of the partial and global structures. In: Janssen, J. & Lenca, P. (Eds.), Proceedings ASMDA 2005, ENST Bretagne (pp. 355–364).Google Scholar
  2. Cazes, P., Chessel, D., & Dolédec, S. (1988). L’analyse des correspondances internes d’un tableau partitionné. Son usage en hydrobiologie. Revue de Statistique Appliquee, 36(1), 39–54.Google Scholar
  3. Escofier, B. (1984). Analyse factorielle en référence à un modèle. Application à l’analyse de tableaux d’échanges. Revue de Statistique Appliquee, 32(4), 25–36.MathSciNetGoogle Scholar
  4. European-Communities (2009). Health statistics – Atlas on mortality in the European Union. Statistical books, Office for Official Publications of the European Communities, Luxembourg.Google Scholar
  5. Eurostat (2008). Eurostat-population and social conditions. Web,
  6. INE-España (2010). Inebase. Base de datos de INE, Instituto Nacional de Estadística de España,
  7. Pagès, J. (2004). Multiple factor analysis: main features and application to sensory data. Revista Colombiana de Estadística, 27(1), 1–26.Google Scholar
  8. Van der Heijden, P. (1987). Correspondence analysis of longitudinal categorical data. Leiden: DSWO Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Departamento de EstadísticaUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Facultad de EstadísticaUniversidad Santo TomásBogotáColombia

Personalised recommendations