Role of Ethylene and Bacterial ACC Deaminase in Nodulation of Legumes

  • Muhammad Arshad
  • Azeem Khalid
  • Sher M. Shahzad
  • Tariq Mahmood


Rhizobia–legume symbiosis is a complex process involving a set of plant and bacterial genes leading to formation and development of root nodules. Plant hormone, ethylene plays an important role in regulating nodule developmental processes and signaling networks in response to a wide range of biotic and abiotic stresses. Ethylene is known as a negative regulator of nodulation. Several studies have shown that inoculation of nitrogen-fixing bacteria collectively called rhizobia leads to a temporal stimulation of ethylene production that suppresses nodule formation. Application of exogenous ethylene gas or its precursors and/or ethylene-releasing compounds also reduces nodulation on legumes. Nonetheless, inhibitors of ethylene synthesis or its physiological action have been found to promote nodulation in legumes. Plant growth-promoting rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase can increase nodulation in legumes by degrading ACC (an immediate precursor of ethylene) and thus, by lowering ethylene concentrations in the plant. In this chapter, the role of ethylene and bacterial ACC deaminase in nodulation of legumes is reviewed critically.


  1. Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology. Academic, New YorkGoogle Scholar
  2. Andrea JF, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Poll 147:540–545CrossRefGoogle Scholar
  3. Arshad M, Frakenberger WT Jr (2002) Ethylene: agricultural sources and applications. Kluwer/Academic Publishers, New YorkGoogle Scholar
  4. Bajgiran AR, Lakzian A, Rastin NS (2008) Elongation of shoot and root in wheat by ACC deaminase of Rhizobium spp. indigenous to soils of Iran. Int J Agr Biol 10:481–486Google Scholar
  5. Bari R, Jones JDG (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488PubMedCrossRefGoogle Scholar
  6. Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423PubMedCrossRefGoogle Scholar
  7. Bonfante P, Anca A (2009) Plants mycorrhizal fungi, and bacteria: a network of interactions. Ann Rev Microbiol 63:363–83CrossRefGoogle Scholar
  8. Caba JM, Poveda JL, Gresshoff PM, Ligero F (1999) Differential sensitivity of nodulation to ethylene in soybean cv. Bragg and a super-nodulating mutant. New Phytol 142:233–242CrossRefGoogle Scholar
  9. Caba JM, Recalde L, Ligero F (1998) Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa. Plant Cell Environ 21:87–93CrossRefGoogle Scholar
  10. Charon C, Sousa C, Crespi M, Kondorosi A (1999) Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti. Plant J 11:1953–1965Google Scholar
  11. Collavino M, Riccillo PM, Grasso DH, Crespi M, Aguilar OM (2005) GuaB activity is required in Rhizobium tropici during the early stages of nodulation of determinate nodules but is dispensable for the Sinorhizobium meliloti - Alfalfa symbiotic interaction. Mol Plant Microbe Interact 18:742–750PubMedCrossRefGoogle Scholar
  12. Contesto C, Desbrosses G, Lefoulon C, Bena FG (2008) Effects of rhizobacterial ACC-deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth promoting rhizobacteria. Plant Sci 175:178–189CrossRefGoogle Scholar
  13. Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365PubMedCrossRefGoogle Scholar
  14. Csukasi F, Merchante D, Valpuesta V (2009) Modification of plant hormone levels and signaling as a tool in plant biotechnology. Biotechnol J 4:1293–1304PubMedCrossRefGoogle Scholar
  15. Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394PubMedCrossRefGoogle Scholar
  16. Ding Y, Oldroyd GED (2009) Positioning the nodule, the hormone dictum. Plant Signal Behav 4:89–93PubMedCrossRefGoogle Scholar
  17. D’Haeze W, Rycke RD, Mathis R, Goormachtig S, Pagnotta S, Verplancke C, Capoen W, Holsters M (2003) Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. PNAS 100:11789–11794PubMedCrossRefGoogle Scholar
  18. Drennan DSH, Norton C (1972) The effect of ethrel on nodulation in Pisum sativum L. Plant Soil 36:53–57CrossRefGoogle Scholar
  19. Duan J, Müller KM, Charles TC, Vesely S, Glick BR (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436PubMedCrossRefGoogle Scholar
  20. Duodu S, Bhuvaneswari TV, Stokkermans TJ, Peters NK (1999) A positive role for rhizobitoxine in Rhizobium-legume symbiosis. Mol Plant Microbe Interact 12:1082–1089CrossRefGoogle Scholar
  21. Farajzadeh D, Aliasgharzad N, Bashir NS, Yakhchali B (2010) Cloning and characterization of a plasmid encoded ACC deaminase from an indigenous Pseudomonas fluorescens FY32. Curr Microbiol 61:37–43PubMedCrossRefGoogle Scholar
  22. Fearn JC, LaRue TA (1991) Ethylene inhibitors restore nodulation of sim-5 mutants of Pisum sativum L. cv. Sparkle. Plant Physiol 96:239–246PubMedCrossRefGoogle Scholar
  23. Fernandez-Lopez M, Goormachtig S, Gao M, D’Haeze W, van Montagu M (1998) Ethylene-mediated phenotypic plasticity in root nodule development on Sesbania rostrata. Plant Biol 95:2724–12728Google Scholar
  24. Figueiredo MVB, Martinez CR, Burity HA, Chanway CP (2008) Plant growth promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24:1187–1193CrossRefGoogle Scholar
  25. Frankenberger WT Jr, Arshad M (1995) Phytohormones in soils: microbial production and function. Marcel Dekker Inc, New YorkGoogle Scholar
  26. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  27. Gonzalez-Rizzo S, Crespi M, Frugler F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium melilotim. Plant Cell 18:2680–2693PubMedCrossRefGoogle Scholar
  28. Goormachtig S, Capoen W, James EK, Holsters M (2004) Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. PNAS 101:6303–6308PubMedCrossRefGoogle Scholar
  29. Goodlass G, Smith KA (1979) Effect of ethylene on root extension and nodulation in pea (Pisum sativum L.) and white clover (Trifolium repens L.). Plant Soil 51:387–395CrossRefGoogle Scholar
  30. Gresshoff PM, Rose RJ, Singh M, Rolfe BG (2003) Symbiosis signals. Todays’ life science. HR.pdf. Cited May/June 2003
  31. Guinel FC, Geil RD (2002) A model for the development of rhizobial and arbuscular mycorrhizal symbiosis in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can J Bot 80:695–720CrossRefGoogle Scholar
  32. Guinel FC, LaRue TA (1992) Ethylene inhibitors partly restore nodulation to pea mutant E107 (brz). Plant Physiol 99:515–518PubMedCrossRefGoogle Scholar
  33. Guinel FC, Sloetjes LL (2000) Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym16), a pleiotropic mutant that nodulates poorly and has pale green leaves. J Exp Bot 51:885–894PubMedCrossRefGoogle Scholar
  34. Heidstra RW, Yang WC, Yalcin Y, Peck S, Emons AM, van Kammen A, Bisseling T (1997) Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development 124:1781–1787PubMedGoogle Scholar
  35. Hunter WJ (1993) Ethylene production by root nodules and effect of ethylene on nodulation in Glycine max. Appl Environ Microbiol 59:1947–1950PubMedGoogle Scholar
  36. Khalid A, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth promoting rhizobacteria and sustainable agriculture. In: Khan MS, Zaidi A, Musarat J (eds) Microbial strategies for crop improvement. Springer-Verleg, Berlin, pp 133–160CrossRefGoogle Scholar
  37. Khan MS, Zaidi A, Musarrat J (2009) Microbial strategies for crop improvement. Springer-Verleg, BerlinCrossRefGoogle Scholar
  38. Kinkema M, Scott PT, Gresshoff M (2006) Legume nodulation: successful symbiosis through short and long distance signaling. Func Plant Biol 33:707–721CrossRefGoogle Scholar
  39. Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505CrossRefGoogle Scholar
  40. Lee KH, LaRue TA (1992a) Inhibition of nodulation of pea by ethylene. Plant Physiol 99:108CrossRefGoogle Scholar
  41. Lee KH, LaRue TA (1992b) Exogenous ethylene inhibits nodulation of Pisum sativum L. cv. Sparkle. Plant Physiol 100:1759–1763PubMedCrossRefGoogle Scholar
  42. Lee KH, LaRue TA (1992c) Ethylene as a possible mediator of light and nitrate induced inhibition of nodulation of Pisum sativum L. cv. Sparkle. Plant Physiol 100:1334–1338PubMedCrossRefGoogle Scholar
  43. Ligero F, Lluch C, Olivares J (1987) Evolution of ethylene from roots and nodulation rate of alfalfa (Medicago sativa L.) plants inoculated with Rhizobium meliloti as affected by the presence of nitrate. J Plant Physio 129:461–467CrossRefGoogle Scholar
  44. Ligero F, Caba JM, Lluch C, Olivares J (1991) Nitrate inhibition of nodulation can be overcome by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol 97:1221–1225PubMedCrossRefGoogle Scholar
  45. Ligero F, Poveda JL, Gresshoff PM, Caba JM (1999) Nitrate inoculation in enhanced ethylene biosynthesis in soybean roots as a possible mediator of nodulation control. J Plant Physiol 154:482–488CrossRefGoogle Scholar
  46. Lohar D, Stiller J, Kam J, Stacey G, Gresshoff PM (2009) Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus. Ann Bot 104:277–285PubMedCrossRefGoogle Scholar
  47. Lorteau MA, Ferguson BJ, Guinel FC (2001) Effects of cytokinin on ethylene production and nodulation in pea (Pisumsati_um) cv. Sparkle. Physiol Planta 112:421–428CrossRefGoogle Scholar
  48. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–56PubMedCrossRefGoogle Scholar
  49. Lynch J, Brown K (2006) Plant-environment interactions. CRC, Boca Raton, FLGoogle Scholar
  50. Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897PubMedCrossRefGoogle Scholar
  51. Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402PubMedCrossRefGoogle Scholar
  52. Markwei CM, LaRue TA (1997) Phenotypic characterization of sym 21, a gene conditioning shoot-controlled inhibition of nodulation in Pisum sativum cv. Sparkle. Physiol Planta 100:927–932CrossRefGoogle Scholar
  53. Mayak S, Tirosh T, Glick BR (2004) Plant growth promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572PubMedCrossRefGoogle Scholar
  54. Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kalo P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, Bosch KV, Long SR, Cook DR, Kiss GB, Oldroyda GED (2007) An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell 19:1221–1234PubMedCrossRefGoogle Scholar
  55. Musarrat J, Al Khedhairy AA, Al-Arifi S, Khan MS (2009) Role of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium-legume symbiosis. In: Khan MS, Zaidi A, Musarat J (eds) Microbial strategies for crop improvement. Springer-Verleg, Berlin, pp 63–83CrossRefGoogle Scholar
  56. Maekawa-Yoshikawa M, Muller J, Takeda N, Maekawa T, Sato S, Tabata S, Perry J, Wang TL, Groth M, Brachmann A, Parniske M (2009) The Temperature-sensitive brush mutant of the legume Lotus japonicus reveals a link between root development and nodule infection by rhizobia. Plant Physiol 149:1785–1796PubMedCrossRefGoogle Scholar
  57. Nie L, Shah S, Rashid A, Burd GI, Dixon GD, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361CrossRefGoogle Scholar
  58. Nukui N, Ezura H, Minamisawa K (2004) Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A enhances formation of infection threads and nodule primordia. Plant Cell Physiol 45:427–35PubMedCrossRefGoogle Scholar
  59. Nukui N, Ezura H, Yohsshi K, Yasuta T, Minamisawa K (2000) Effect of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41:893–897PubMedCrossRefGoogle Scholar
  60. Nukui N, Minamisawa K, Ayabe SI, Aoki T (2006) Expression of the 1-aminocyclopropane-1-carboxylate deaminase gene requires symbiotic nitrogen fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Appl Environ Microbiol 72:4964–4969PubMedCrossRefGoogle Scholar
  61. Okazaki S, Nukui N, Sugawara M, Minamisawa K (2004) Rhizobial strategies to enhance symbiotic interactions: rhizobiotoxine and 1-aminocyclopropane-1-carboxylate deaminase. Microbes Environ 19:99–111CrossRefGoogle Scholar
  62. Oldroyd GED, Engstrom EM, Long SR (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849PubMedGoogle Scholar
  63. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–46PubMedCrossRefGoogle Scholar
  64. Owens LD, Thompson JF, Fennessy PV (1972) Dihydrorhizobitoxine, a new ether amino acid from Rhizobium japonicum. J Chem Soc Chem Commun 1972:715CrossRefGoogle Scholar
  65. Pandey P, Kang SC, Maheshwari DK (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 89:170–180Google Scholar
  66. Parker MA, Peters NK (2001) Rhizobitoxine production and symbiotic compatibility of Bradyrhizobium from Asian and North American lineages of Amphicarpaea. Can J Microbiol 47:1–6Google Scholar
  67. Patrick A, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster GTS, Genschik P (2009) Gibberellin signaling controls cell proliferation rate in Arabidopsis. Cur Biol 19:1188–1193CrossRefGoogle Scholar
  68. Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530PubMedCrossRefGoogle Scholar
  69. Penmetsa RV, Frugoli JA, Smith LS, Long SR (2003) Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol 131:998–1008PubMedCrossRefGoogle Scholar
  70. Penrose DM, Glick BR (2001) Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC-deaminase containing plant growth promoting bacteria. Can J Microbiol 47:368–372PubMedCrossRefGoogle Scholar
  71. Peters NK, Crist-Esters DK (1989) Nodule formation is stimulated by the ethylene inhibitor amino ethoxy vinylglycine. Plant Physiol 91:690–693PubMedCrossRefGoogle Scholar
  72. Peters NK, Crist-Esters DK (2001) Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol 41:893–897Google Scholar
  73. Prayitno J, Rolfe BG, Mathesius U (2006) The ethylene-insensitive sickle mutant of medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol 142: 168–180PubMedCrossRefGoogle Scholar
  74. Remans R, Croonenborghs A, Gutierrez RT, Michiels J, Vanderleyden J (2007) Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. Eur J Plant Pathol 119:341–351CrossRefGoogle Scholar
  75. Saleem M, Arshad M, Hussain S, Bhatti A (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC-deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648PubMedCrossRefGoogle Scholar
  76. Santnerl A, Estelle M (2009) Recent advances and emerging trends in plant hormone signaling. Nature 459:1071–1078CrossRefGoogle Scholar
  77. Sato-Nara K, Yuhashi K, Higashi K, Hosoya K, Kubota M, Ezura H (1999) Stage and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiol 120:321–30PubMedCrossRefGoogle Scholar
  78. Schmidt JS, Harper JE, Hoffman TK, Bent AF (1999) Regulation of soybean nodulation independent of ethylene signalling. Plant Physiol 119:951–959PubMedCrossRefGoogle Scholar
  79. Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159PubMedCrossRefGoogle Scholar
  80. Shaharoona B, Arshad M, Khalid A (2007) Differential response of etiolated pea seedling to 1-aminocyclopropane-1-carboxylate and/or L-methionine utilizing rhizobacteria. J Micrbiol 45:15–20Google Scholar
  81. Shahzad MS, Khalid A, Arshad M, Khalid M, Mehboob I (2008) Integrated use of plant growth promoting bacteria and P-enriched compost for improving growth, yield and nodulation of chickpea. Pak J Bot 40:1735–144Google Scholar
  82. Shirtliffe SJ, Vessy JK, Buttery BR, Park SJ (1996) Comparison of growth and N accumulation of common bean (Phaseolus vulgaris L.) cv. OAC Rico and its nodulation mutants, R69 and R99. Can J Plant Sci 76:73–83CrossRefGoogle Scholar
  83. Stearns JC, Glick BR (2003) Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv 21:193–210PubMedCrossRefGoogle Scholar
  84. Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory modules meet. Cur Opin Plant Biol 12:548–555CrossRefGoogle Scholar
  85. Suganuma N, Yamauchi H, Yamamoto K (1995) Enhanced production of ethylene by soybean roots after inoculation with Bradyrhizobium japonicum. Plant Sci 111:163–168CrossRefGoogle Scholar
  86. Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K (2006) Rhizobitoxine modulates plant microbe interactions by ethylene inhibition. Biotechnol Adv 24:382–388PubMedCrossRefGoogle Scholar
  87. Sun J, Cardoza V, Mitchell DM, Bright L, Oldroyd G, Harris JM (2006) Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J 46:961–970PubMedCrossRefGoogle Scholar
  88. Tak T, van Spronsen PC, Kijne JW, van Brussel AAN, Kees Boot JM (2004) Accumulation of lipochitin oligosaccharides and NodD-activating compounds in an efficient plant-Rhizobium nodulation assay. Mol Plant Interac 17:816–823CrossRefGoogle Scholar
  89. Tamimi SM, Timko MP (2003) Effects of ethylene and inhibitors of ethylene synthesis and action on nodulation in common bean (Phaseolus vulgaris L.). Plant Soil 257:125–131CrossRefGoogle Scholar
  90. Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2006) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Sci Mag 315:104–107Google Scholar
  91. Tittabutr P, Awaya JD, Li QX, Borthakur D (2008) The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst Appl Microbiol 31:141–150PubMedCrossRefGoogle Scholar
  92. Truchet G, Roche P, Lerouge P, Vasse J, Camut S, De Billy F, Prome JC, Dénarié J (1991) Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351:670–673CrossRefGoogle Scholar
  93. Uchiumi T, Oowada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima T, Saeki K, Oomori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda S, Sioya K, Abe M, Minamisawa K (2004) Expression islands clustered on symbiosis island of Mesorhizobium loti genome. J Bacteriol 186:2439–2448PubMedCrossRefGoogle Scholar
  94. Valverde C, Wall LG (2005) Ethylene modulates the susceptibility of the root for nodulation in actinorhizal Discaria trinervis. Physiol Planta 124:121–131CrossRefGoogle Scholar
  95. van Spronsen PC, van Brussel AA, Kijne JW (1995) Nod factors produced by Rhizobium leguminosarum biovar viciae induce ethylene-related changes in root cortical cells of Vicia sativa sp nigra. Eur J Cell Biol 68:463–9PubMedGoogle Scholar
  96. van Workum WAT, Van Brussel AAN, Tak T, Wijffelman CA, Kijne WJ (1995) Ethylene prevents nodulation of Vicia sativa ssp. nigra by exopolysaccharides deficient mutants of Rhizobium leguminosarum bv viciae. Mol Plant Microbe Interac 8:278–285CrossRefGoogle Scholar
  97. Vernie T, Moreau S, de Billy F, Plet J, Combier J-P, Rogers C, Vernie GO (2008) Factor involved in the control of nodule number and differentiation in Medicago truncatula. Plant Cell 20:2696–2713PubMedCrossRefGoogle Scholar
  98. Xie ZP, Staehelin C, Wiemken A, Bolle T (1996) Ethylene responsiveness of soybean cultivars characterized by leaf senescence, chitinase induction and nodulation. J Plant Physiol 149: 690–694CrossRefGoogle Scholar
  99. Xiong K, Fuhrmann JJ (1996) Comparison of rhizobitoxine-induced inhibition of β-cystathionase from different bradyrhizobia and soybean genotypes. Plant Soil 186:53–61CrossRefGoogle Scholar
  100. Yang J, Kloepper JW, Choong-Min R (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4PubMedCrossRefGoogle Scholar
  101. Yoo SD, ChoY SJ, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270–279PubMedCrossRefGoogle Scholar
  102. Yuhashi KI, Ichikawa N, Ezuura H, Akao S, Minakawa Y, Nukui N, Yasuta T, Minamisawa K (2000) Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl Environ Microbiol 66:2658–2663PubMedCrossRefGoogle Scholar
  103. Zaat SA, Van Brussel AA, Tak T, Lugtenberg BJ, Kijne JW (1989) The ethylene inhibitor aminoethoxyvinylglycine restores normal nodulation by Rhizobium leguminosarum biovar Viciaeon Vicia sativa subsp. nigra by suppressing the thick and short roots phenotype. Planta 177:141–150CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2010

Authors and Affiliations

  • Muhammad Arshad
    • 1
  • Azeem Khalid
    • 2
  • Sher M. Shahzad
    • 1
  • Tariq Mahmood
    • 2
  1. 1.Institute of Soil and Environmental SciencesUniversity of AgricultureFaisalabadPakistan
  2. 2.Department of Environmental SciencesPMAS Arid Agriculture UniversityRawalpindiPakistan

Personalised recommendations