Advertisement

Nature as a model for technical sensors

  • Horst Bleckmann
  • Adrian Klein
  • Gunnar Meyer

Abstract

Nature has developed a stunning diversity of sensory systems. Humans rely mainly on visual information for object detection, discrimination and spatial orientation. In addition, they use acoustic, olfactory, and somatosensory cues. But even beyond these common sensory systems a large variety of highly specialized sensors have evolved in the animal kingdom. Examples include the infrared receptors of snakes and pyrophilous insects, the electroreceptors of fish, the magnetoreceptors of birds and the lateral line of fish and amphibians. This chapter deals with certain aspects of the detection and processing of hydrodynamic information in both natural and artificial lateral line systems. We show that the study of seemingly exotic sensory systems, such as the fish lateral line, can lead to discoveries that are useful for the construction of man-made sensors.

Keywords

Hair Cell Lateral Line Technical Sensor Lateral Line Canal Lateral Line Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barth FG (1978) Slit sense organs: “Strain gauges” in the arachnid exoskeleton. Symposium Zool Soc London 42: 439–448Google Scholar
  2. Bassett DK, Carton AG, Montgomery JC (2006) Flowing water decreases hydrodynamic signal detection in a fish with an epidermal lateral-line system. Marine Freshwater Res 57: 611–617CrossRefGoogle Scholar
  3. Beal DN, Hover FS, Triantafyllou MS, Liao JC, Lauder GV (2006) Passive propulsion in vortex wakes. J Fluid Mech 549: 385–402CrossRefGoogle Scholar
  4. Blaxter JHS, Gray JAB, Best ABC (1983) Structure and development of the free neuromasts and the lateral line system of the herring. J Mar Biol Ass UK 63: 247–260CrossRefGoogle Scholar
  5. Bleckmann H (1993) Role of the lateral line and fish behavior. In: Pitcher TJ (ed) Behaviour of teleost fishes. Chapman and Hall, London New York Tokyo, pp 201–246CrossRefGoogle Scholar
  6. Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer W (ed) Progress in zoology. Vol 41. Gustav Fischer, Stuttgart Jena New York, pp 1–115Google Scholar
  7. Bleckmann H (2006) The lateral line system of fish. In: Hara T, Zielinski B (eds) Sensory systems neuroscience: Fish physiology, Vol 25. Elsevier, Amsterdam, pp 411–453CrossRefGoogle Scholar
  8. Bleckmann H (2007) Peripheral and central processing of lateral line information. J Comp Physiol A 194:145–158CrossRefGoogle Scholar
  9. Bleckmann H, Münz H (1988) The anatomy and physiology of lateral line mechanoreceptors in teleosts with multiple lateral lines. In: Barth FG (ed) Verh Dtsch Zool Ges 81. Gustav Fischer, Stuttgart, pp 288Google Scholar
  10. Bleckmann H, Tittel G, Blübaum-Gronau E (1989) The lateral line system of surface-feeding fish: Anatomy, physiology, and behavior. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 501–526CrossRefGoogle Scholar
  11. Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line organs of the topminnow Aplocheilus lineatus. Naturwissenschaften 68: 624–625CrossRefGoogle Scholar
  12. Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 172:115–128CrossRefGoogle Scholar
  13. Bleckmann H, Zelick R (2009) Lateral line system of fish. Integrative Zool 4:13–25CrossRefGoogle Scholar
  14. Briicker C, Bauer D, Chaves H (2007) Dynamic response of micro-pillar sensors measuring fluctuating wall-shear-stress. Exp Fluids 42:737–749CrossRefGoogle Scholar
  15. Burt de Perera T (2004) Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus. Animal Behav 68: 291–295CrossRefGoogle Scholar
  16. Campenhausen Cv, Riess I, Weissert R (1981) Detection of stationary objects in the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143: 369–374CrossRefGoogle Scholar
  17. Carton AG, Montgomery JC (2002) Responses of lateral line receptors to water flow in the Antarctic notothenoid, Trematomus bernacchii. Polar Biol 25: 789–793Google Scholar
  18. Chagnaud BP, Bleckmann H, Engelmann J (2006) Neural responses of goldfish lateral line afferents to vortex motions. J Exp Biol 209: 327–342PubMedCrossRefGoogle Scholar
  19. Chagnaud BP, Bleckmann H, Hofmann M (2007a) Kármán vortex street detection by the lateral line. J Comp Physiol A 193: 753–763CrossRefGoogle Scholar
  20. Chagnaud BP, Bleckmann H, Hofmann MH (2008a) Lateral line nerve fibers do not respond to bulk water flow direction. J Zool 111: 204–217CrossRefGoogle Scholar
  21. Chagnaud BP, Brücker C, Hofmann MH, Bleckmann H (2008b) Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations. J Neurosci 28:4479–4487PubMedCrossRefGoogle Scholar
  22. Chagnaud BP, Hofmann MH, Mogdans J (2007b) Responses to dipole stimuli of anterior lateral line nerve fibres in goldfish, Carassius auratus, under still and running water conditions. J Comp Physiol A 193: 249–263CrossRefGoogle Scholar
  23. Chaves LM, Hodos W (1998) Color reversal-learning deficits after tectofugal pathway lesions in the pigeon telencephalon. Behav Brain Res 90: 1–12PubMedCrossRefGoogle Scholar
  24. Coombs S, Finneran JJ, Conley RA (2000) Hydrodynamic imaging formation by the lateral line system of the Lake Michigan mottled sculpin, Cottus bairdi. Phil Trans R Soc B 355:1111–1114PubMedCrossRefGoogle Scholar
  25. Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 553–593CrossRefGoogle Scholar
  26. Coombs S, Montgomery JC (1999) The enigmatic lateral line. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp 319–362CrossRefGoogle Scholar
  27. Curcic-Blake B, van Netten SM (2006) Source localization encoding in the fish lateral line. J Exp Biol 209:1548–1559PubMedCrossRefGoogle Scholar
  28. Denton EJ, Gray JAB (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc R Soc Lond B 218:1–26PubMedCrossRefGoogle Scholar
  29. Denton EJ, Gray JAB (1988a) Mechanical factors in the excitation of lateral line canals. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 595–617CrossRefGoogle Scholar
  30. Denton EJ, Gray JAB (1988b) Mechanical factors in the excitation of the lateral lines of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 595–617CrossRefGoogle Scholar
  31. Denton EJ, Gray JAB (1989) Some observations on the forces acting on neuromasts in fish lateral line canals. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 229–246CrossRefGoogle Scholar
  32. Ebert J, Müller S, Westhoff G (2007) Behavioral examination of the infrared sensitivity of ball on. J Zool 272: 340–347CrossRefGoogle Scholar
  33. Engelmann J, Bleckmann H (2004) Coding of lateral line stimuli in the goldfish midbrain in still-and running water. J Zool 107:135–151CrossRefGoogle Scholar
  34. Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still-and running water. J Comp Physiol A 188: 513–526CrossRefGoogle Scholar
  35. Fan Z, Chen J, Zou J, Bullen D, Liu C, Delcomyn F (2002) Design and fabrication of artifical lateral line flow sensors. J Micromech Microeng 12: 655–661CrossRefGoogle Scholar
  36. Flock A (1971a) Sensory transduction in hair cells. I. Principles of receptor physiology. In: Loewenstein WR (ed) Handbook of sensory physiology. Springer, New York, pp 396–441Google Scholar
  37. Flock A (1971b) The lateral line organ mechanoreceptors. In: Hoar WS, Randall DJ (eds) Fish physiology, Vol. 5. Academic Press, New York, pp 241–263Google Scholar
  38. Flock A, Wersäll J (1962) A study of the orientation of sensory hairs of the receptor cells in the lateral line organ of a fish with special reference to the function of the receptors. J Cell Biol 15: 19–27PubMedCrossRefGoogle Scholar
  39. Goulet J, Engelmann J, Chagnaud BP, Franosch J-MP, Suttner MD, van Hemmen JL (2008) Object localization through the lateral line system of fish: theory and experiment. J Comp Physiol A 194:1–17CrossRefGoogle Scholar
  40. Hoin-Radkovski I, Bleckmann H, Schwartz E (1984) Determination of source distance in the surface-feeding fish Pantodon buchholzi (Pantodontidae). Animal Behav 32: 840–851CrossRefGoogle Scholar
  41. Humphrey JAC, Barth FG (2008) Medium flow-sensing hairs: Biomechanics and models. In: Casas J, Simpson J (eds) Advances in insect physiology, Vol 34. Academic Press, London, pp 1–80Google Scholar
  42. Jakubowski M (1967) Cutaneous sense organs of fishes. VIII. The structure of the system of lateral-line canal organs in the Percidae. Acta Biol Cracov Ser Zool 10: 69–81Google Scholar
  43. Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83–130CrossRefGoogle Scholar
  44. Kanter MJ, Coombs S (2003) Rheotaxis and prey detection in uniform currents by lake michigan mottled sculpin (Cottus bairdii). J Exp Biol 206: 59–70PubMedCrossRefGoogle Scholar
  45. Konishi M (1986) Centrally synthesized maps of sensory space. Trends Neurosci 100:163–168CrossRefGoogle Scholar
  46. Kroese ABA, Schellart NAM (1987) Evidence for velocity-and acceleration-sensitive units in the trunk lateral line of the trout. J Physiol 393: 29Google Scholar
  47. Kroese ABA, Schellart NAM (1992) Velocity-and acceleration-sensitive units in the trunk lateral line of the trout. J Neurophysiol 68: 2212–2221PubMedGoogle Scholar
  48. Kröther S, Bleckmann H, Mogdans J (2004) Effects of running water on brainstem latetral line responses in trout, Oncorhynchus mykiss, to sinusoidal wave stimuli. J Comp Physiol A 190: 437–448CrossRefGoogle Scholar
  49. Kröther S, Mogdans J, Bleckmann H (2002) Brain-stem lateral line responses to sinusoidal wave stimuli in still-and running water. J Exp Biol 205: 1471–1484PubMedGoogle Scholar
  50. Künzel S (2009) Characterisation of brainstem lateral line neurons in goldfish, Carassius auratus: Frequency selectivity, spatial excitation patterns and flow sensitivity. PhD thesis, University of Bonn, Germany.Google Scholar
  51. Liao JC (2007) A review of fish swimming mechanics and behaviour in altered flows. Phil Trans R Soc Lond B 362:1973–1993CrossRefGoogle Scholar
  52. Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) The Karman gait: Novel kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206:1059–1073PubMedCrossRefGoogle Scholar
  53. Lohmann KJ (2000) The neurobiology of magneto-reception in vertebrate animals. T Neurosci 23: 153–159CrossRefGoogle Scholar
  54. Manger PR, Pettigrew JD (1995) Electroreception and the feeding behaviour of platypus (Ornithorhynchus anatius: Monotremata: Mammalia). Phil Trans R Soc London 347: 359–381CrossRefGoogle Scholar
  55. McCormick CA (1989) Central lateral line mechanosensory pathways in bony fish. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 341–364CrossRefGoogle Scholar
  56. Mogdans J, Bleckmann H (1998) Responses of the goldfish trunk lateral line to moving object. J Comp Physiol A 182: 659–676CrossRefGoogle Scholar
  57. Mogdans J, Geisen S (2009) Responses of the goldfish head lateral line to moving objects. J Comp Physiol A 195:151–165CrossRefGoogle Scholar
  58. Mogdans J, Krother S, Engelmann J (2004) Neurobiology of the fish lateral line: Adaptations for the detection of hydrodynamic stimuli in running water. In: von der Emde G, Mogdans J, Kapoor GB (eds) The senses of fish. Adaptations for the reception of natural stimuli. Narosa Publishing House, New Delhi, pp 265–287CrossRefGoogle Scholar
  59. Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389: 960–963CrossRefGoogle Scholar
  60. Montgomery JC, Macdonald JA (1987) Sensory tuning of lateral line receptors in Antarctic fish to the movements of planctonic prey. Science 235: 195–196PubMedCrossRefGoogle Scholar
  61. Müller HM, Fleck A, Bleckmann H (1996) The responses of central octavolateralis cells to moving sources. J Comp Physiol A 179:455–471CrossRefGoogle Scholar
  62. Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157: 555–568CrossRefGoogle Scholar
  63. Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 285–298CrossRefGoogle Scholar
  64. Nelson JS (1984) Fishes of the world. John Wiley and Sons, New YorkGoogle Scholar
  65. Peleshanko S, Julian MD, Ornatska M, McConney ME, LeMieux MC, Chen N, Tucker C, Yang Y, Liu C, Humphrey JAC, Tsukruk VV (2007) Hydrogel-Encapsulated microfabricated hair cells mimicking fish cupula neuromast. Adv Mater 19: 2903–2909CrossRefGoogle Scholar
  66. Pillapakkam SB, Barbier C, Humphrey AC, Rüter A, Otto B, Bleckmann H, Hanke W (2007) Experimental and numerical investigation of a fish artificial lateral line canal. In: 5th International Symposium on turbulence and shear flow phenomena. TU München, pp 1–6Google Scholar
  67. Plachta D, Hanke W, Bleckmann H (2003) A hydrodynamic topographic map and two hydrodynamic subsystems in a vertebrate brain. J Exp Biol 206: 3479–3486PubMedCrossRefGoogle Scholar
  68. Plachta D, Mogdans J, Bleckmann H (1999) Responses of midbrain lateral line units of the goldfish, Carassius auratus, to constant-amplitude and amplitude modulated water wave stimuli. J Comp Physiol A 185:405–417CrossRefGoogle Scholar
  69. Pohlmann K (2003) When the night comes: Non-visual predator-prey interactions in fish. Dissertation. University of Konstanz, KonstanzGoogle Scholar
  70. Pohlmann K, Atema J, Breithaupt T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207: 2971–2978PubMedCrossRefGoogle Scholar
  71. Pohlmann K, Grasso FW, Breithaupt T (2001) Tracking wakes: The nocturnal predatory strategy of piscivorous catfish. Proc Nat Acad Sci 98: 7371–7374PubMedCrossRefGoogle Scholar
  72. Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol 34: 110–131PubMedCrossRefGoogle Scholar
  73. Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 459–480CrossRefGoogle Scholar
  74. Sand O, Bleckmann H (2008) Orientation to auditory and lateral line stimuli. In: Webb JF, Fay RR, Popper AN (eds) Fish bioacoustics, vol 22. Springer, New York, pp 183–232CrossRefGoogle Scholar
  75. Sandini G, Metta G (2003) Retina-like sensors: motivations, technology and applications. In: Barth FG, Humphrey JAC, Secomb TW (eds) Sensors and sensing in biology and engineering. Springer Verlag, Wien New York, pp 251–262CrossRefGoogle Scholar
  76. Sarpeshkar R (2003) The silocon cochlea. In: Barth FG, Humphrey JAC, Secomb TW (eds) Sensors and sensing in biology and engineering. Springer, Wien New York.Google Scholar
  77. Schemmel C (1967) Vergleichende Untersuchungen an den Hautsinnesorganen ober-und unterirdisch lebender Astyanax-Formen. Z Morph Tiere 61: 255–316CrossRefGoogle Scholar
  78. Schmitz A, Bleckmann H, Mogdans J (2008) Organization of the superficial neuromast system in goldfish, Carassius auratus. J Morphol 269: 751–761PubMedCrossRefGoogle Scholar
  79. Schmitz A, Sehrbrock A, Schmitz H (2007) The analysis of the mechanosensory origin of the infrared sensilla in Melanophila acuminata (Coleoptera; Bupestridae) adduces new insight into the transduction mechanism. Arth Struct Develop 36: 291–303CrossRefGoogle Scholar
  80. Schwartz E (1970) Ferntastsinnesorgane von Oberflachenfischen. Z Morphol Tiere 67:40–57Google Scholar
  81. Settles GS, Kester DA, Dodson-Dreibelbis U (2003) The external aerodynamics of canine olfaction. In: Barth FG, Humphrey JAC, Secomb TW (eds) Sensors and sensing in biology and engeneering. Springer, Wien New York, pp 323–335CrossRefGoogle Scholar
  82. Sutterlin AM, Waddy S (1975) Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis). J Fish Res Bd. Canada 32: 2441–2446CrossRefGoogle Scholar
  83. Teyke T (1989) Learning and remembering the environment in the blind cave fish Anoptichthys jordani. J Comp Physiol A164: 655–662CrossRefGoogle Scholar
  84. Trump WJV, McHenry MJ (2008) The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio). J Exp Biol 211: 2105–2115PubMedCrossRefGoogle Scholar
  85. van Netten SM (2006) Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology. Biol Cybern 94: 67–85PubMedCrossRefGoogle Scholar
  86. van Netten SM, Khanna SM (1993) Mechanical demodulation of hydrodynamic stimuli performed by the lateral line organ. In: Allum JHJ, Allum-Mecklenburg DJ, Harris FP, Probst R (eds) Prog Brain Res. Elsevier, Amsterdam, pp45–51Google Scholar
  87. van Netten SM, Wiersinga-Post C (2002) Matched peripheral filtering in the lateral line organ and relation to temperature. Bioacoustics 12: 153–156CrossRefGoogle Scholar
  88. Vogel D, Bleckmann H (2000) Behavioral discrimination of water motions caused by moving objects. J Comp Physiol A 186:1107–1117PubMedCrossRefGoogle Scholar
  89. Voigt R, Carton AG, Montgomery JC (2000) Responses of anterior lateral line afferent neurones to water flow. J Exp Biol 203: 2495–2502PubMedGoogle Scholar
  90. von der Emde G (1990) Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii. J Comp Physiol A 167: 413–421Google Scholar
  91. von der Emde G, Bleckmann H (1992) Differential responses of two types of electroreceptive afferents to signal distortions may permit capacitance measurement in a weakly electric fish, Gnathonemus petersii. J Comp Physiol A 171: 683–694CrossRefGoogle Scholar
  92. Webb JF (1989) Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behav Evol 33: 34–53PubMedCrossRefGoogle Scholar
  93. Weber T, Bleckmann H, Miinz H (1991) Model experiments regarding the function of complex lateral line canals. In: Pfannenstiel H-D (ed) Verh Dtsch Zool Ges 84. Gustav Fischer, Stuttgart, pp 461–462Google Scholar
  94. Wehner R (1987) Matched filters — neural models of the external world. J Comp Physiol A 161: 511–531CrossRefGoogle Scholar
  95. Wojtenek W, Mogdans J, Bleckmann H (1998) The responses of midbrain lateral line units of the goldfish Carassius auratus to moving objects. J Zool 101: 69–82Google Scholar
  96. Wullimann MF (1998) The central nervous system. In: Evans DH (ed) The physiology of fishes. CRC Press, New York, pp 245–282Google Scholar
  97. Yang Y, Chen J, Enge J, Pandya S, Chen N, Tucker C, Coombs S, Jones DL, Liu C (2006) Distant touch hydrodynamic imaging with an artificial lateral line. P Nat Acad Sci 103:18891–18895CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  • Horst Bleckmann
    • 1
  • Adrian Klein
  • Gunnar Meyer
  1. 1.Institute of ZoologyUniversity of BonnBonnGermany

Personalised recommendations