Der muskuläre Energiestoffwechsel bei körperlicher Aktivität

Chapter

Zusammenfassung

Ein Muskel kann nur dann über eine längere Zeitspanne kontrahiert werden, wenn eine ausreichende Konzentration von Adenosintriphosphat (ATP) in den kontraktilen Elementen gegeben ist. ATP ist das einzige Substrat, das in der Lage ist, die Muskelkontraktion direkt herbeizuführen. Ob Tiere oder Pflanzen, ATP dient als universelle biologische Speicher- und Überträgersubstanz.

Literatur

  1. Andersson A, Sjodin A, Hedman A, Olsson R, Vessby B (2000) Fatty acid profile of skeletal muscle phospholipids in trained and untrained young men. Am J Physiol Endocrinol Metab 279(4): E744–751Google Scholar
  2. Bassit RA, Sawada LA, Bacurau RF, Navarro F, Martins E Jr, Santos RV, Caperuto EC, Rogeri P, Costa Rosa LF (2002) Branched-chain amino acid supplementation and the immune response of long-distance athletes. Nutrition 18(5): 376–379PubMedCrossRefGoogle Scholar
  3. Bekedam MA, van Beek-Harmsen BJ, Boonstra A, van Mechelen W, Visser FC, van der Laarse WJ (2003) Maximum rate of oxygen consumption related to succinate dehydrogenase activity in skeletal muscle fibres of chronic heart failure patients and controls. Clin Physiol Funct Imaging 23(6): 337–343PubMedCrossRefGoogle Scholar
  4. Bergström J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiol Scand 71(2): 140–150PubMedCrossRefGoogle Scholar
  5. Bizeau ME, Willis WT, Hazel JR (1998) Differential responses to endurance training in subsarcolemmal and intermyofibrillar mitochondria. J Appl Physiol 85(4): 1279–1284PubMedGoogle Scholar
  6. Blei ML, Conley KE, Kushmerick MJ (1993) Seperate measures of ATP utilization and recovery in human skeletal muscle. Journal of Physiology 465: 203–233PubMedPubMedCentralCrossRefGoogle Scholar
  7. Blom CS (1989) Post-exercise glucose uptake and glycogen synthesis in human muscle during oral or i.v. glucose intake. Eur J Appl Physiol 59(5): 327–333CrossRefGoogle Scholar
  8. Blomstrand E, Saltin B (2001) BCAA intake affects protein metabolism in muscle after but not during exercise in humans. Am J Physiol Endocrinol Metab 281(2): E365–274Google Scholar
  9. Blomstrand E, Eliasson J, Karlsson HK, Köhnke R (2006) Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr 136 (1 Suppl): 269S–2673SPubMedGoogle Scholar
  10. Bodner GM (1986) The tricarboxylic acid (TCA), citiric acid, Krebs cycle. J Chem Ed 63: 663–673Google Scholar
  11. Bonen A, Chabowski A, Luiken JJ, Glatz JF (2007) Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical, and physiological evidence. Physiology (Bethesda) 22: 15–29Google Scholar
  12. Brouns F, Saris WHM, Stroecken J, Beckers E, Thijssen R, Rehrer P, Hoor F (1989a) Eating, drinking cycling. A controll Tour de France simulation study Part1. Int J Sports Med 10: S32–S40CrossRefGoogle Scholar
  13. Brouns F, Saris WHM, Stroecken J, Beckers E, Thijssen R, Rehrer P, Hoor F (1989b) Eating, drinking cycling. A controll Tour de France simulation study Part2. Int J Sports Med 10: S41–S48CrossRefGoogle Scholar
  14. Brouns F, Rehrer NJ, Saris WH, Beckers E, Menheere P, ten Hoor F (1989c) Effect of carbohydrate intake during warming-up on the regulation of blood glucose during exercise. Int J Sports Med 10 (Suppl): S68–75CrossRefGoogle Scholar
  15. Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJ, Dyck DJ (2006) Endurance training in obese humans improves glucose tolerance, mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab 291: E99–E107CrossRefGoogle Scholar
  16. Burke LM, Collier GR, Hargreaves M (1993) Muscle glycogen storage after prolonged exercise: effect of the glycemic index of carbohydrate feedings. J Appl Physiol 175(2): 1019–23Google Scholar
  17. Burke LM, Kiens B, Ivy JL (2004) Carbohydrates and fat for training and recovery. J Sports Sci 22(1): 15–30PubMedCrossRefGoogle Scholar
  18. Carraro F, Naldini A, Weber JM, Wolfe RR (1994) Alanine kinetics in humans during low-intensity exercise. Med Sci Sports Exerc 263: 48–53Google Scholar
  19. Castell LM, Poortmans JR, Newsholme EA (1996) Does glutamine have a role in reducing infections in athletes? Eur J Appl Physiol Occup Physiol 73(5): 488–490PubMedCrossRefGoogle Scholar
  20. Castell LM, Poortmans JR, Leclercq R, Brasseur M, Duchateau J, Newsholme EA (1997) Some aspects of the acute phase response after a marathon race, and the effects of glutamine supplementation. Eur J Appl Physiol Occup Physiol 75(1): 47–53PubMedCrossRefGoogle Scholar
  21. Cermak NM, van Loon LJ (2013) The Use of Carbohydrates During Exercise as an Ergogenic Aid. Sports Med 43: 1139–1155PubMedCrossRefGoogle Scholar
  22. Coggan AR, Raguso CA, Gastaldelli A, Sidossis LS, Yeckel CW (2000) Fat metabolism during high-intensity exercise in endurance-trained and untrained men. Metabolism 49(1): 122–128PubMedCrossRefGoogle Scholar
  23. Connett RJ (1988) Analysis of metabolic control: new insights using scaled creatine kinase model. Am J Physiol 254: R949–959Google Scholar
  24. Coyle EF (1991) Timing and method of increased carbohydrate intake to cope with heavy training, competition and recovery. J Sports Sci 9: 29–51PubMedCrossRefGoogle Scholar
  25. Coyle EF, Hagberg JM, Hurley BF, Martin WH, Ehsani AA, Holloszy JO (1983) Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol 55: 230–235PubMedGoogle Scholar
  26. Coyle EF, Coggan AR, Hemmert MK, Lowe RC, Walters TJ (1985) Substrate usage durin gprolonged exercise following a preexercise meal. J Appl Physiol 59: 429–433PubMedGoogle Scholar
  27. Currell K, Jeukendrup AE (2008) Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc 40(2): 275–281PubMedCrossRefGoogle Scholar
  28. Delp MD (1998) Differential effects of training on the control of skeletal muscle perfusion. Med Sci Sports Exerc 30(3): 361–734PubMedCrossRefGoogle Scholar
  29. Deveci D, Marshall JM, Egginton S (2001) Relationship between capillary angiogenesis, fiber type, and fiber size in chronic systemic hypoxia. Am J Physiol Heart Circ Physiol 281(1): H241–52Google Scholar
  30. Di Camillo B, Eduati F, Nair SK, Avogaro A, Toffolo GM (2014) Leucine modulates dynamic phosphorylation events in insulin signaling pathway and enhances insulin-dependent glycogen synthesis in human skeletal muscle cells. BMC Cell Biol 20(15): 9CrossRefGoogle Scholar
  31. Dideriksen K, Reitelseder S, Holm L (2013) Influence of amino acids, dietary protein, and physical activity on muscle mass development in humans. Nutrients 13(3): 852–876CrossRefGoogle Scholar
  32. Dyck DJ, Putman CT, Heigenhauser GJ, Hultman E, Spriet LL (1993) Regulation of fat-carbohydrate interaction in skeletal muscle during intense aerobic cycling. Am J Physiol 265: E852–859Google Scholar
  33. Dubouchaud H, Butterfield GE, Wolfel EE, Bergman BC, Brooks GA (2000) Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. Am J Physiol Endocrinol Metab 278(4): E571–579Google Scholar
  34. Ferguson SJ, Sorgato MC (1982) Proton electrochemical gradients and energy-transduction processes. Annu Rev Biochem 51: 185–217PubMedCrossRefGoogle Scholar
  35. Fielding RA, Costill DL, Fink WJ, King DS, Hargreaves M, Kovaleski JE (1985) Effect of carbohydrate feeding frequencies and dosage on muscle glycogen use during exercise. Med Sci Sports Exerc 17(4): 472–476PubMedCrossRefGoogle Scholar
  36. Foley JM, Harkema SJ, Meyer RA (1991) Decreased ATP cost of isometric contractions in ATP-depleted rat fast-twitch muscle. Am J Physiol 261: C872–881Google Scholar
  37. Forslund AH, Hambraeus L, Olsson RM, El-Khoury AE, Yu YM, Young VR (1998) The 24-h whole body leucine and urea kinetics at normal and high protein intakes with exercise in healthy adults. Am J Physiol 275: E310–2Google Scholar
  38. Francescato M, Puntel I (2006) Does a preexercise carbohydrate feeding improve a 20-km cross-country ski performance? J Sports Med Phys Fitness 46: 248–256PubMedGoogle Scholar
  39. Galler S, Hibler K, Gohlsch B, Pette D (1997) Two functionally distinct myosin heavy chain isoforms in slow skeletal muscle fibers. Fed Europ Biochem Soc Letters 410: 150–152CrossRefGoogle Scholar
  40. Geiger PC, Han DH, Wright DC, Holloszy JO (2006) How muscle insulin sensitivity is regulated: testing of a hypothesis. Am J Physiol Endocrinol Metab 291(6): E1258–1263CrossRefGoogle Scholar
  41. Glatz JF, Luiken JJ, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90(1): 367–417PubMedCrossRefGoogle Scholar
  42. Goldspink G (1994) Zelluläre und molekulare Aspekte der Trainingsadaptation des Skelletmuskels. In: Komi PV (Hrsg) Kraft und Schnellkraft im Sport. Deutscher Ärzteverlag, Köln: S 213–231Google Scholar
  43. Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 86(12): 5755–5761PubMedCrossRefGoogle Scholar
  44. Green H, Goreham C, Ouyang J, Ball-Burnett M, Ranney D (1999) Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise. Am J Physiol 276: R591–666Google Scholar
  45. Helge JW, Wu BJ, Willer M, Daugaard JR, Storlien LH, Kiens B (2001) Training affects muscle phospholipid fatty acid composition in humans. J Appl Physiol 90(2): 670–677PubMedCrossRefGoogle Scholar
  46. Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJ (1999) Effect of induced metabolic acidosis on human skeletal muscle metabolism during exercise. Am J Physiol 277: E647–658Google Scholar
  47. Hood DA, Parent G (1991) Metabolic and contractile responses of rat fast-twitch muscle to 10-Hz stimulation. Am J Physiol 260: C832–840Google Scholar
  48. Hoppeler H (1986) Exercise-induced ultrastructural changes in skeletal muscle. Int J Sports Med 7(4): 187–204PubMedCrossRefGoogle Scholar
  49. Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R (1985) Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch 403(4): 369–376PubMedCrossRefGoogle Scholar
  50. Howald H, Boesch C, Kreis R, Matter S, Billeter R, Essen-Gustavsson B, Hoppeler H (2002) Content of intramyocellular lipids derived by electron microscopy, biochemical assays, and (1)H-MR spectroscopy. J Appl Physiol 92(6): 2264–2272PubMedCrossRefGoogle Scholar
  51. Hurley BF, Nemeth PM, Martin WH, Hagberg JM, Dalsky GP, Holloszy JO (1986) Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol 60(2): 562–567PubMedGoogle Scholar
  52. Hwang JH, Pan JW, Heydari S, Hetherington HP, Stein DT (2001) Regional differences in intramyocellular lipids in humans observed by in vivo 1 H-MR spectroscopic imaging. J Appl Physiol 90(4): 1267–1274PubMedGoogle Scholar
  53. Ivy JL,Ferguson-Stegall LM (2013) Nutrient Timing. The means to improved exercise performance, recovery, and training adaptation. American Journal of Lifestyle Medicine 8: 246–259CrossRefGoogle Scholar
  54. Ivy JL, Costill DL, Fink WJ, Lower RW (1979) Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports Exerc 11(1): 1–6Google Scholar
  55. Ivy JL, Katz AL, Cutler CL, Sherman WM, Coyle EF (1988) Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol 64(4): 1480–1485PubMedGoogle Scholar
  56. Jackman MR, Willis WT (1996) Characteristics of mitochondria isolated from type I and type IIb skeletal muscle. Am J Physiol 270: C673–678Google Scholar
  57. Jensen TE, Lai YC (2009) Regulation of muscle glycogen synthase phosphorylation and kinetic properties by insulin, exercise, adrenaline and role in insulin resistance. Arch Physiol Biochem 115(1): 13–21PubMedCrossRefGoogle Scholar
  58. Jensen J, Richter EA (2012) Regulation of glucose and glycogen metabolism during and after exercise J Physiol 590(5): 1069–1076PubMedCrossRefGoogle Scholar
  59. Jentjens R, Jeukendrup A (2003) Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med 33(2): 117–44PubMedCrossRefGoogle Scholar
  60. Jentjens RL, Achten J, Jeukendrup AE (2004) High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc 36(9): 1551–1558PubMedCrossRefGoogle Scholar
  61. Jeukendrup AE (2004) Carbohydrate intake during exercise and performance. Nutrition 20(7–8): 669–677PubMedCrossRefGoogle Scholar
  62. Jeukendrup AE (2010) Carbohydrate and exercise performance: the role of multiple transportable carbohydrates. Curr Opin Clin Nutr Metab Care 13(4): 452–457PubMedCrossRefGoogle Scholar
  63. Jeukendrup AE, Saris WH, Wagenmakers AJ (1998) Fat metabolism during exercise: a review–part II: regulation of metabolism and the effects of training. Int J Sports Med 19(5): 293–302PubMedCrossRefGoogle Scholar
  64. Jeukendrup AE, Moseley L, Mainwaring GI, Samuels S, Perry S, Mann CH (2006) Exogenous carbohydrate oxidation during ultraendurance exercise 100(4): 1134–141Google Scholar
  65. Kalliokoski KK, Knuuti J, Nuutila P (2005) Relationship between muscle blood flow and oxygen uptake during exercise in endurance-trained and untrained men. J Appl Physiol 98(1): 380–383PubMedCrossRefGoogle Scholar
  66. Karamanolis I, Tokmakidis S (2008) Effects of carbohydrate ingestion 15 min before exercise on endurance running capacity. Appl Physiol Nutr Metab 33: 441–449PubMedCrossRefGoogle Scholar
  67. Karlsson HK, Nilsson PA, Nilsson J, Chibalin AV, Zierath JR, Blomstrand E (2004) Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. Am J Physiol Endocrinol Metab 287(1): E1–7CrossRefGoogle Scholar
  68. Kiens B, Essen-Gustavsson B, Christensen NJ, Saltin B (1993) Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol (Lond) 469: 459–478CrossRefGoogle Scholar
  69. Kiens B (2006) Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev 86(1): 205–243PubMedCrossRefGoogle Scholar
  70. Kimball SR, Jefferson LS (2004) Amino acids as regulators of gene expression. Nutr Metab 171(1): 3CrossRefGoogle Scholar
  71. Kraus WE, Torgan CE, Taylor DA (1994) Skeletal muscle adaptation to chronic low-frequency motor nerve stimulation. Exerc Sport Sci Rev 22: 313–360PubMedCrossRefGoogle Scholar
  72. Kumar V, Atherton PJ, Selby A, Rankin D, Williams J, Smith K, Hiscock N, Rennie MJ (2012) Muscle protein synthetic responses to exercise: effects of age, volume, and intensity. J Gerontol A Biol Sci Med Sci 67(11): 1170–1177PubMedCrossRefGoogle Scholar
  73. Kushmerick MJ, Meyer RA, Brown TR (1992) Regulation of oxygen consumption in fast- and slow-twitch muscle. Am J Physiol 263: C598–606Google Scholar
  74. Leijssen DP, Saris WH, Jeukendrup AE, Wagenmakers AJ (1995) Oxidation of exogenous [13C]galactose and [13C]glucose during exercise. J Appl Physiol 79(3): 720–725PubMedGoogle Scholar
  75. Lowey S, Waller GS, Trybus KM (1993) Function of skeletal muscle myosin heavy and light chain isoforms by an in vitro motility assay. J Biol Chem 268(27): 20414–20418PubMedGoogle Scholar
  76. Lucidi P, Rossetti P, Porcellati F, Pampanelli S, Candeloro P, Andreoli AM, Perriello G, Bolli GB, Fanelli CG (2010) Mechanisms of insulin resistance after insulin-induced hypoglycemia in humans: the role of lipolysis. Diabetes 59(6): 1349–1357PubMedPubMedCentralCrossRefGoogle Scholar
  77. Martin WH, Dalsky GP, Hurley BF, Matthews DE, Bier DM, Hagberg JM, Rogers MA, King DS, Holloszy JO (1993) Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol 265: E708–714Google Scholar
  78. McComas AJ (1994) Human neuromuscular adaptations that accompany changes in activity. Med Sci Sports Exerc 26(12): 1498–509PubMedCrossRefGoogle Scholar
  79. McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA (2000) Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. Am J Physiol Endocrinol Metab 278(4): E580–587Google Scholar
  80. Meyer RA, Brown TR, Krilowicz BL, Kushmerick MJ (1986) Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle. Am J Physiol 250: C264–274Google Scholar
  81. Millward DJ, Davies CTM, Halliday D, Wolman SL, Matthews D, Rennie M (1982) Effects of exercise on protein metabolism in humans as explored with stable isotopes. Federation Proc 41: 2686–2691Google Scholar
  82. Millard-Stafford M, Rosskopf LB, Snow TK, Hinson BT (1997) Water versus carbohydrate-electrolyte ingestion before and during a 15-km run in the heat. Int J Sport Nutr 7(1): 26–38PubMedCrossRefGoogle Scholar
  83. Morales-Lopez JL, Aguera E, Miro F, Galisteo AM (1990) Effects of training on fiber composition in rat gastrocnemius muscle. Biol Struct Morphog 3(2): 53–56PubMedGoogle Scholar
  84. Nieman DC, Johanssen LM, Lee JW, Arabatzis K (1990) Infectious episodes in runners before and after the Los Angeles Marathon. J Sports Med Phys Fitness 30(3): 316–328PubMedGoogle Scholar
  85. Perez M, Lucia A, Rivero L, Serrano L, Calbet L, Delgado A, Chicharro L (2002) Effects of transcutaneous short-term electrical stimulation on M. vastus lateralis characteristics of healthy young men. Pflugers Arch 443(5): 866–874PubMedCrossRefGoogle Scholar
  86. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR (2000) An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol 88(2): 386–392PubMedGoogle Scholar
  87. Rennie MJ, Bohé J, Smith K, Wackerhage H, Greenhaff P (2006) Branched-chain amino acids as fuels and anabolic signals in human muscle. J Nutr 36(1 Suppl): 264S–268SGoogle Scholar
  88. Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GF, Hill RE, Grant SM (1996) Effects of training duration on substrate turnover and oxidation during exercise. J Appl Physiol 81(5): 2182–2191PubMedGoogle Scholar
  89. Richardson RS (1998) Oxygen transport: air to muscle cell. Med Sci Sports Exerc 30(1): 53–59PubMedCrossRefGoogle Scholar
  90. Richter EA, Derave W, Wojtaszewski JF (2001) Glucose, exercise and insulin: emerging concepts. J Physiol 535: 313–322PubMedPubMedCentralCrossRefGoogle Scholar
  91. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert, E Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265: E380–391Google Scholar
  92. Romijn JA, Coyle EF, Sidossis LS, Rosenblatt J, Wolfe RR (2000) Substrate metabolism during different exercise intensities in endurance-trained women. J Appl Physiol 88(5): 1707–1714PubMedGoogle Scholar
  93. Sahlin K (1986) Muscle fatigue and lactic acid accumulation. Acta Physiol Scand Suppl 556: 83–91PubMedGoogle Scholar
  94. Sahlin K (1991) Control of energetic processes in contracting human skeletal muscle. Biochem Soc Trans 19(2): 353–358PubMedCrossRefGoogle Scholar
  95. Saltin B, Radegran G, Koskolou MD, Roach RC (1998) Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol Scand 162(3): 421–36PubMedCrossRefGoogle Scholar
  96. Schrauwen P, van Aggel-Leijssen DP, Hul G, Wagenmakers AJ, Vidal H, Saris WH, van Baak MA (2002) The effect of a 3-month low-intensity endurance training program on fat oxidation and acetyl-CoA carboxylase-2 expression. Diabetes 51(7): 2220–2226PubMedCrossRefGoogle Scholar
  97. Severinghaus JW (2000) Oxygen transport in blood and to mitochondria. In: Saltin B, Boushel R, Secher N, Mitchel J (eds) Exercise and circulation in health and disease. … pp 169–174Google Scholar
  98. Smekal G, von Duvillard SP, Pokan R, Tschan H, Baron R, Hofmann P, Wonisch M, Bachl N (2003) Effect of endurance training on muscle fat metabolism during prolonged exercise: agreements and disagreements. Nutrition 19(10): 891–900PubMedCrossRefGoogle Scholar
  99. Sherman WM (1992) Recovery from endurance exercise. Med Sci Sports Exerc 24 (9 Suppl) S336–9Google Scholar
  100. Sherman WM, Brodowicz G, Wright DA, Allen WK, Simonsen J, Dernbach A (1989) Effects of 4 h preexercise carbohydrate feedings on cycling performance. Med Sci Sports Exerc 21(5): 598–604PubMedCrossRefGoogle Scholar
  101. Sherman W, Peden M, Wright D (1991) Carbohydrate feedings 1 h before exercise improves cycling performance. Am J Clin Nutr 54: 866–870PubMedGoogle Scholar
  102. Sial S, Coggan AR, Hickner RC, Klein S (1998) Training-induced alterations in fat and carbohydrate metabolism during exercise in elderly subjects. Am J Physiol 274: E785–790Google Scholar
  103. Starritt EC, Howlett RA, Heigenhauser GJ, Spriet LL (2000) Sensitivity of CPT I to malonyl-CoA in trained and untrained human skeletal muscle. Am J Physiol Endocrinol Metab 278(3): E462–468Google Scholar
  104. Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL (2006) An acute increase in skeletal muscle carnitine content alters fuel metabolism in resting human skeletal muscle. J Clin Endocrinol Metab 91(12): 5013–5018PubMedCrossRefGoogle Scholar
  105. Suter E, Hoppeler H, Claassen H, Billeter R, Aebi U, Horber F, Jaeger P, Marti B (1995) Ultrastructural modification of human skeletal muscle tissue with 6-month moderate-intensity exercise training. Int J Sports Med 16(3): 160–166PubMedCrossRefGoogle Scholar
  106. Sweeney HL, Kushmerick MJ, Mabuchi K, Sreter FA, Gergely J (1988) Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibers. J Biol Chem 263(18): 9034–9039PubMedGoogle Scholar
  107. Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ (2007) Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol 292(3): R1271–1278CrossRefGoogle Scholar
  108. Tate CA, Taffet GE (1989) The regulatory role of calcium in striated muscle. Med Sci Sports Exerc 21(4): 393–398PubMedCrossRefGoogle Scholar
  109. Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR (2001) Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab 281(2): E197–206Google Scholar
  110. Turcotte LP, Richter EA, Kiens B (1992) Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. Am J. Physiol 262: E791–799Google Scholar
  111. Turcotte LP (1999) Role of fats in exercise. Types and quality. Clin Sports Med 18(3): 485–498PubMedCrossRefGoogle Scholar
  112. Vandenbogaerde TJ, Hopkins WG (2011) Effects of Acute Carbohydrate Supplementation on Endurance Performance – A Meta-Analysis. Sports Med 41(9): 773–792PubMedCrossRefGoogle Scholar
  113. van Loon LJ (2004) Use of intramuscular triacylglycerol as a substrate source during exercise in humans. J Appl Physiol 97(4): 1170–1187PubMedCrossRefGoogle Scholar
  114. van Loon LJ, Jeukendrup AE, Saris WH, Wagenmakers AJ (1999) Effect of training status on fuel selection during submaximal exercise with glucose ingestion. J Appl Physiol 87(4): 1413–1420PubMedGoogle Scholar
  115. van Loon LJ, Saris WH, Kruijshoop M, Wagenmakers AJ (2000) Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr 72(1): 106–111PubMedGoogle Scholar
  116. van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536: 295–304PubMedPubMedCentralCrossRefGoogle Scholar
  117. van Loon LJ, Koopman R, Stegen JH, Wagenmakers AJ, Keizer HA, Saris WH (2003) Intramyocellular lipids form an important substrate source during moderate intensity exercise in endurance-trained males in a fasted state. J Physiol 553: 611–625PubMedPubMedCentralCrossRefGoogle Scholar
  118. van Wessel T, de Haan A, van der Laarse WJ, Jaspers RT (2010) The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism? Eur J Appl Physiol 110(4): 665–94PubMedPubMedCentralCrossRefGoogle Scholar
  119. Vock R, Weibel ER, Hoppeler H, Ordway G, Weber JM, Taylor CR (1996) Design of the oxygen and substrate pathways. V. Structural basis of vascular substrate supply to muscle cells. J Exp Biol 199: 1675–1688PubMedGoogle Scholar
  120. Wagenmakers AJ (1998) Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exerc Sport Sci Rev 26: 287–314PubMedCrossRefGoogle Scholar
  121. Wagenmakers AJM, Meckers EJ, Brouns F, Kuipers H, Soeters PB, van der Vusse GJ, Saris WH (1991) Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise. Am J Physiol 260: E883–890Google Scholar
  122. Wagenmakers AJM, Brouns F, Saris, WHM., Halliday D (1993) Oxidation rates of orally ingested carbohydrates during prolonged exercise in men. J Appl Physiol 75(6): 274–280Google Scholar
  123. Wall BT, Stephens FB, Constantin-Teodosiu D, Marimuthu K, Macdonald IA, Greenhaff PL (2011) Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans. J Physiol 589: 963–73PubMedPubMedCentralCrossRefGoogle Scholar
  124. Walker J, Heigenhauser GF, Hultman E, Spriet LL (2000) Dietary carbohydrate, muscle glycogen content, and endurance performance in well-trained women. J Appl Physiol (88): 2151–2158PubMedGoogle Scholar
  125. Westerblad H, Lee JA, Lannergren J, Allen DG (1991) Cellular mechanisms of fatigue in skeletal muscle. Am J Physiol 261: C195–209Google Scholar
  126. Wibom R, Hultman E, Johansson M, Matherei K, Constantin-Teodosiu D, Schantz PG (1992) Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining. J Appl Physiol 73(5): 2004–2010PubMedGoogle Scholar
  127. Winder WW (1998) Malonyl-CoA-regulator of fatty acid oxidation in muscle during exercise. Exerc Sport Sci Rev 26: 117–132PubMedCrossRefGoogle Scholar
  128. Wright DA, Sherman WM, Dernbach AR (1991) Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J Appl Physiol 71(3): 1082–1088PubMedGoogle Scholar
  129. Yoshida Y, Jain SS, McFarlan JT, Snook LA, Chabowski A, Bonen A (2013) Exercise- and training-induced upregulation of skeletal muscle fatty acid oxidation are not solely dependent on mitochondrial machinery and biogenesis. J Physiol 591: 4415–4426PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Abteilung SportphysiologieInstitut für Sportwissenschaft Universität WienWienÖsterreich

Personalised recommendations