Dreiphasigkeit der Energiebereitstellung

Chapter

Zusammenfassung

Die Grundlagen für die „anaerobe Schwelle“ wurden bereits in den 20er-Jahren gelegt (A.V. Hill). Eine erste Benennung als Schwelle (Punkt des optimalen Wirkungsgrades der Atmung, PoW) erfolgte in den späten 50er-Jahren durch Hollmann. Der Begriff „anaerobic threshold“ stammt von Wasserman und McIlroy aus dem Jahr 1964. Ab diesem Zeitpunkt wurden unzählige Konzepte und Benennungen einer anaeroben Schwelle vorgestellt, welche sich somit zu einem der meist untersuchten Phänomene in der Leistungsphysiologie entwickelte.

Literatur

  1. Aunola S, Rusko H (1988) Comparison of two methods for aerobic threshold determination. Eur J Appl Physiol 57: 420–424CrossRefGoogle Scholar
  2. Berg A, Stippig J, Keul J, Huber G (1980) Aktuelle Aspekte der modernen Ergometrie. Bewegungstherapie und ambulante Koronargruppen. 1. Zur Beurteilung der Leistungsfähigkeit und Belastbarkeit von Patienten mit koronarer Herzkrankheit. Dtsch Z Sportmed 31: 199–205Google Scholar
  3. Beaver WL, Wasserman K, Whipp BJ (1985) Improved detection of lactate threshold during exercise using a log-log transformation. J Appl Physiol 59: 1936–1940PubMedGoogle Scholar
  4. Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60: 2020–2027PubMedGoogle Scholar
  5. Brooks GA (1985) Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 17: 22–31PubMedGoogle Scholar
  6. Brooks GA (2009) Cell-cell and intracellular lactate shuttles. J Physiol 587(Pt 23): 5591–600CrossRefPubMedPubMedCentralGoogle Scholar
  7. Conconi F, Ferrari M, Ziglio PG, Droghetti P, Codeca L (1982) Determination of the anaerobic threshold by a noninvasive field test in runners. J Appl Physiol 52: 869–873PubMedGoogle Scholar
  8. Conconi F, Grazzi G, Casoni I, Guglielmini C, Brosetto C, Ballarin E, Mazzoni G, Patracini M, Manfredini F (1996) The Conconi Test: Methodology after 12 years of application. Int J Sports Med 17: 509–519CrossRefPubMedGoogle Scholar
  9. Cottin F, Leprêtre PM, Lopes P, Papelier Y, Médigue C, Billat V (2006) Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling. Int J Sports Med 27(12): 959–967CrossRefPubMedGoogle Scholar
  10. Cottin F, Médigue C, Lopes P, Leprêtre PM, Heubert R, Billat V (2007) Ventilatory thresholds assessment from heart rate variability during an incremental exhaustive running test. Int J Sports Med 28(4): 287–294CrossRefPubMedGoogle Scholar
  11. Davis A, Basset J, Hughes P, Gass GC (1983) Anaerobic threshold and lactate turnpoint. Eur J Appl Physiol 50: 383–392CrossRefGoogle Scholar
  12. Dickhuth HH, Yin L, Niess A, Röcker K, Mayer F, Heitkamp HC, Horstmann T (1999) Ventilatory, Lactate-derived and catecholamine thresholds during incremental treadmill running: Relationship and reproducibility. Int J Sportsmed 20: 122–127Google Scholar
  13. Hartree W, Hill AV (1921) The regulation of the supply of energy in muscular contraction. J Physiol 55(1–2): 133–58CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hartree W, Hill AV (1923) The anaerobic processes involved in muscular activity. J Physiol 58(2–3): 127–37CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hofmann P, Tschakert G (2011) Special needs to prescribe exercise intensity for scientific studies. Cardiol Res Pract 15: 209302Google Scholar
  16. Hofmann P, Bunc V, Leitner H, Pokan R, Gaisl G (1994a) Heart rate threshold related to lactate turn point and steady state exercise on a cycle ergometer. Eur J Appl Physiol 69: 132–139CrossRefGoogle Scholar
  17. Hofmann P, Pokan R, Preidler K, Leitner H, Szolar D, Eber B, Schwaberger G (1994b) Relationship between heart rate threshold, lactate turn point and myocardial function. Int J Sports Med 15: 232–237CrossRefPubMedGoogle Scholar
  18. Hofmann P, Pokan R, Von Duvillard SP, Seibert FJ, Zweiker R, Schmid P (1997) Heart rate performance curve during incremental cycle ergometer exercise in healthy young male subjects. Med Sci Sports Exerc 29(6): 762–768CrossRefPubMedGoogle Scholar
  19. Hofmann P, Von Duvillard SP, Seibert FJ, Pokan R, Wonisch M, Lemura LM, Schwaberger G (2001) %HRmax target heart rate is dependent on heart rate performance curve deflection. Med Sci Sports Exerc 33(10): 1726–31CrossRefPubMedGoogle Scholar
  20. Hofmann P, Wonisch M, Pokan R, Schwaberger G, Smekal G, von Duvillard SP (2005) Beta1-adrenoceptor mediated origin of the heart rate performance curve deflection. Med Sci Sports Exerc 37(10): 1704–9CrossRefPubMedGoogle Scholar
  21. Hollmann W (1985) Historical remarks on the development of the aerobic-anaerobic threshold up to 1966. Int J Sports Med 6(3): 109–16CrossRefPubMedGoogle Scholar
  22. Hollmann W (2001) 42 years ago – development of the concepts of ventilatory and lactate threshold. Sports Med 31(5): 315–20CrossRefPubMedGoogle Scholar
  23. Hultman E, Sahlin K (1980) Acid-base balance during exercise. Exercise and sport sciences reviews 8: 41–128PubMedGoogle Scholar
  24. Hopker JG, Jobson SA, Pandit JJ (2011) Controversies in the physiological basis of the,anaerobic threshold’ and their implications for clinical cardiopulmonary exercise testing. Anaesthesia 66(2): 111–123CrossRefPubMedGoogle Scholar
  25. Karlsson J, Jacobs I (1982) Onset of blood lactate accumulation during muscular exercise as a threshold concept. I. Theoretical Considerations. Int J Sports Med 3: 190–201CrossRefPubMedGoogle Scholar
  26. Kindermann W, Simon G, Keul J (1979) The significance of the aerobic-anaerobic transition for determination of work load intensities during endurance training. Eur J Appl Physiol 49: 190–192Google Scholar
  27. Mader A, Liesen H, Heck H, Philippi H, Rost R, Schürch P, Hollmann W (1976) Zur Beurteilung der Sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Sportarzt Sportmed 21: 80–88 und 109–112Google Scholar
  28. McLellan TM (1985) Ventilatory and plasma lactate response with different exercise protocols: A comparison of methods. Int J Sports Med 6: 30–35CrossRefPubMedGoogle Scholar
  29. Omiya K, Itoh H, Harada N, Maeda T, Tajima A, Oikawa K, Koike A, Aizawa T, Fu LT, Osada N (2004) Relationship between double product break point, lactate threshold, and ventilatory threshold in cardiac patients. Eur J Appl Physiol 91(2–3): 224–9CrossRefPubMedGoogle Scholar
  30. Péronnet F, Aguilaniu B (2006) Lactic acid buffering, nonmetabolic CO2 and exercise hyperventilation: a critical reappraisal. Respiratory Physiology & Neurobiology 150(1): 4–18CrossRefGoogle Scholar
  31. Pokan R, Hofmann P, von Duvillard SP, Beaufort F, Schumacher M, Fruhwald FM, Zweiker R, Eber B, Gasser R, Brandt D, Smekal G, Klein W, Schmid P (1997) Left ventricular function in response to the transition from aerobic to anaerobic metabolism. Med Sci Sports Exerc 29(8): 1040–1047CrossRefPubMedGoogle Scholar
  32. Pokan R, Hofmann P, VonDuvillard SP, Beaufort F, Smekal G, Gasser R, Eber B, Bachl N, Schmid P (1998) The heart rate performance curve and left ventricular function during exercise in patients after myocardial infarction. Med Sci Sports Exerc 30(10): 1475–1480CrossRefPubMedGoogle Scholar
  33. Pokan R, Hofmann P, von Duvillard SP, Smekal G, Högler R, Tschan H, Baron R, Schmid P, Bachl N (1999) The heart rate turn point, reliability and methodological aspects. Med Sci Sports Exerc 31(6): 903–907CrossRefPubMedGoogle Scholar
  34. Riley M, Maehara K, Pórszász J, Engelen MP, Bartstow TJ, Tanaka H, Wasserman K (1997) Association between the anaerobic threshold and the break-point in the double product/work rate relationship. Eur J Appl Physiol Occup Physiol 75(1): 14–21CrossRefPubMedGoogle Scholar
  35. Roecker K, Schotte O, Nies AM, Horstmann T, Dickhuth HH (1998) Predicting competition performance in long-distance running by means of a treadmill test. Med Sci Sports Exerc 30: 1552–1557CrossRefPubMedGoogle Scholar
  36. Rusko H, Luhtanen P, Rahkila P, Viitasalo J, Rehunen S, Härkönen M (1986) Muscle metabolism, blood lactate and oxygen uptake in steady state exercise at aerobic and anaerobic thresholds. Eur J Appl Physiol 55: 181–186CrossRefGoogle Scholar
  37. Simonton CA, Higginbotham MB, Cobb FR (1988) The ventilatory threshold: Quantitative analysis of reproducibility and relation to arterial lactate concentration in normal subjects and in patients with chronic congestive heart failure. Am J Cardiol 62: 100–107CrossRefPubMedGoogle Scholar
  38. Skinner JS, McLellan TH (1980) The Transition from Aerobic to Anaerobic Metabolism. Res Q Exerc Sport 51: 234–248CrossRefPubMedGoogle Scholar
  39. Stegmann H, Kindermann W, Schabel A (1981) Lactate Kinetics and Individual Anaerobic Threshold. Int J Sports Med 2: 160–165CrossRefPubMedGoogle Scholar
  40. Tegtbur U, Busse M, Braumann K (1993) Estimation of an individual equilibrium between lactate production and catabolism during exercise. Med Sci Sports Exerc 25(8): 620–627PubMedGoogle Scholar
  41. Urhausen A, Coen B, Weiler B, Kindermann W (1993) Individual anaerobic threshold and maximum lactate steady state. Int J Sports Med 14: 134–139CrossRefPubMedGoogle Scholar
  42. Wasserman K, Mcllroy MB (1964) Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 14: 844–852CrossRefPubMedGoogle Scholar
  43. Wasserman K, Whipp BJ, Koyl SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. Journal of Applied Physiology 35(2): 236–243PubMedGoogle Scholar
  44. Weston SB, Gabbet J (2001) Reproducibility of ventilation of thresholds in trained cyclists during ramp cycle exercise. J Sci Med Sport4(3): 357–366CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Institut für SportwissenschaftWienÖsterreich
  2. 2.Institute of Sports Science Exercise Physiology, Training & Training Therapy Research GroupUniversity of GrazGrazÖsterreich
  3. 3.Facharzt für Innere Medizin und Kardiologie,Sportwissenschafter FranziskusspitalWienÖsterreich

Personalised recommendations