Laktat-Leistungsdiagnostik: Durchführung und Interpretation

Chapter

Zusammenfassung

Sportmedizinische Leistungsprüfverfahren haben als wesentliche Aufgaben die Überprüfung der Gesundheit und der Sport- und Belastungstauglichkeit von Athleten/innen sowie die Feststellung des aktuellen Leistungszustandes unter standardisierten Bedingungen als Grundlage für weiterführende sportmedizinische und trainingspraktische Entscheidungen. Sportmedizinische Leistungsdiagnostik bestimmt dabei die Größe, die Richtungen und die Dynamik der inneren Beanspruchung bei definierten und standardisierten Belastungen und überprüft die physiologischen und patho-physiologischen Reaktionen auf standardisierte ergometrische Belastungen unter Verwendung maximaler und submaximaler Kennwerte.

Literatur

  1. Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, Rodríguez-Seijas J (2014) Comprehensive review on lactate metabolism in human health. Mitochondrion 17: 76–100PubMedCrossRefGoogle Scholar
  2. Aimet M, Pokan R, Schwieger K, Smekal G, Tschan H, von Duvillard SP, Hofmann P, Baron R, Bachl N (2001) Heart rate variability during exercise and recovery. The Tokai Journal of Sports Medical Science 13: 7–14Google Scholar
  3. Algrøy EA, Hetlelid KJ, Seiler S, Stray Pedersen JI (2011) Quantifying training intensity distribution in a group of Norwegian professional soccer players. Int J Sports Physiol Perform 1: 70–81CrossRefGoogle Scholar
  4. Amorini AM, Nociti V, Petzold A, Gasperini C, Quartuccio E, Lazzarino G, Di Pietro V, Belli A, Signoretti S, Vagnozzi R, Lazzarino G, Tavazzi B (2014) Serum lactate as a novel potential biomarker in multiple sclerosis. Biochim Biophys Acta 1842(7): 1137–1143PubMedCrossRefGoogle Scholar
  5. Antonutto G, DiPrampero PE (1995) The concept of lactate threshold. A short review. J Sports Med Phys Fitness 35(1): 6–12PubMedGoogle Scholar
  6. Åstrand PO (1992) Endurance sport. Endurance in Sport. Blackwell Scientific Publications, Oxford, pp 8–15Google Scholar
  7. Åstrand PO, Rodahl K, Dahl H, Strømme SB (2003) Textbook of Work Physiology. Physiological Bases of Exercise, 4th ed. Human Kinetics, Champaign, ILLGoogle Scholar
  8. Aunola S, Rusko H (1988) Comparison of two methods for aerobic threshold determination. Eur J Appl Physiol 57: 420–424CrossRefGoogle Scholar
  9. Aunola S, Rusko H (1992) Does anaerobic threshold correlate with maximal lactate steady-state? J Sports Sci 10: 309–323PubMedCrossRefGoogle Scholar
  10. Baldari C, Bonavolontà V, Emerenziani GP, Gallotta MC, Silva AJ, Guidetti L (2009) Accuracy, reliability, linearity of Accutrend and Lactate Pro versus EBIO plus analyzer. Eur J Appl Physiol 107: 105–111PubMedCrossRefGoogle Scholar
  11. Baldari C, Videira M, Madeira F, Sergio J, Guidetti L (2004) Lactate removal during active recovery related to the individual anaerobic and ventilatory thresholds in soccer players. Eur J Appl Physiol 93(1–2): 224–230PubMedCrossRefGoogle Scholar
  12. Baldari C, Videira M, Madeira F, Sergio J, Guidetti L (2005) Blood lactate removal during recovery at various intensities below the individual anaerobic threshold in triathletes. J Sports Med Phys Fitness 45: 460–466PubMedGoogle Scholar
  13. Bassett DR, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32: 70–84PubMedCrossRefGoogle Scholar
  14. Beneke R (1995) Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc 27: 863–867PubMedCrossRefGoogle Scholar
  15. Beneke R (2003a) Maximal lactate steady state concentration (MLSS): experimental and modelling approaches. Eur J Appl Physiol 88: 361–369PubMedCrossRefGoogle Scholar
  16. Beneke R (2003b) Methodological aspects of maximal lactate steady state-implications for performance testing. Eur J Appl Physiol 89(1): 95–99PubMedCrossRefGoogle Scholar
  17. Beneke R, von Duvillard SP (1996) Determination of maximal lactate steady state response in selected sports events. Med Sci Sports Exerc 28: 241–246PubMedCrossRefGoogle Scholar
  18. Beneke R, Heck H, Schwarz V, Leithäuser R (1996) Maximal lactate steady state during the second decade of age. Med Sci Sports Exerc 28: 1474–1478PubMedCrossRefGoogle Scholar
  19. Beneke R, Pollmann C, Bleif I, Leithäuser RM (2002) How anaerobic is the Wingate Anaerobic Test for humans. Eur J Appl Physiol 87: 388–392PubMedCrossRefGoogle Scholar
  20. Beneke R, Hutler M, Von Duvillard SP, Sellens M, Leithauser RM (2003) Effect of test interruptions on blood lactate during constant workload testing. Med Sci Sports Exerc 35(9): 1626–1630PubMedCrossRefGoogle Scholar
  21. Beneke R, Leithäuser RM, Ochentel O (2011) Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform 6: 8–24PubMedCrossRefGoogle Scholar
  22. Binder RK, Wonisch M, Corra U, Cohen-Solal A, Vanhees L, Saner H, Schmid JP (2008) Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur J Cardiovasc Prev Rehabil 15: 726–734PubMedCrossRefGoogle Scholar
  23. Bleicher A, Mader A, Mester J (1999) Zur Interpretation von Laktatleistungskurven – experimentelle Ergebnisse mit computergestützten Nachberechnungen. Spectrum der Sportwissenschaft 11(1): 71–83Google Scholar
  24. Braumann K-M, Tegtbur U, Busse MW, Maassen N (1991) Die „Laktatsenke“ – Eine Methode zur Ermittlung der individuellen Dauerleistungsgrenze. Dtsch Z Sportmed 42(6): 240–246Google Scholar
  25. Brooks GA, Fahey ThD, Baldwin KM (2005) Exercise Physiology. Human Bioenergetics and Its Applications, 4th ed. McGraw-Hill, New York, NYGoogle Scholar
  26. Brooks GA (1985a) Anaerobic threshold : review of the concept and directions for future research. Med Sci Sports Exerc 17: 22–31PubMedGoogle Scholar
  27. Brooks GA (1985b) Lactate: Glycolytic end product and oxidative substrate during sustained exercise in mammals – the ‘lactate shuttle’. In: Gilles R (ed) Circulation, Respiration, and Metabolism: Current Comparative Approaches. Springer, Berlin Heidelberg, pp 208–218CrossRefGoogle Scholar
  28. Brooks GA (1986) The lactate shuttle during exercise and recovery Med Sci Sports Exerc 18: 360–368PubMedCrossRefGoogle Scholar
  29. Brooks GA (1991) Current concepts in lactate exchange. Med Sci Sports Exerc 23: 895–906PubMedCrossRefGoogle Scholar
  30. Brooks GA (2000) Intra- and extra-cellular lactate shuttles Med Sci Sports Exerc 32(49): 790–799PubMedCrossRefGoogle Scholar
  31. Brooks GA (2002) Lactate shuttles in nature. Biochem Soc Trans 30(29: 258–264PubMedCrossRefGoogle Scholar
  32. Brooks GA (2009) Cell-cell and intracellular lactate shuttles. J Physiol 587(1): 5591–5600PubMedPubMedCentralCrossRefGoogle Scholar
  33. Busse MW, Maassen N, Böning D (1987) Die Leistungslaktatkurve – Kriterium der aeroben Kapazität oder Indiz für das Muskelglykogen? In: Riekert H (Hrsg) Sportmedizin – Kursbestimmung. Springer, Berlin Heidelberg, S 455–467CrossRefGoogle Scholar
  34. Cabrera ME, Chizeck HJ (1996) On the existence of a lactate threshold during incremental exercise: a systems analysis. J Appl Physiol 80: 1819–1828PubMedGoogle Scholar
  35. Cadevila L (1999) Differences between lactate concentration of samples from ear lobe and finger tip. J Physiol Biochem 55: 333–340Google Scholar
  36. Cagran C, Tschakert G, Stuehlinger N, Pokan R, von Duvillard SP, Hofmann P (2011) Value of the Dmax methode to determine the second lactate turn point. Med Sci Sports Exerc 43: S434CrossRefGoogle Scholar
  37. Cellini M, Vitiello P, Nagliati A, Ziglio PG, Martinelli S, Ballarin E, Conconi F (1986) Noninvasive determination of the anaerobic threshold in swimming. Int J Sports Med 7: 347–351PubMedCrossRefGoogle Scholar
  38. Cheng B, Kuipers H, Snyder AC, Keizer HA, Jeukendrup A, Hesselink M (1992) A new approach for the determination of ventilatory and lactate thresholds. Int J Sports Med 13: 518–522PubMedCrossRefGoogle Scholar
  39. Christensen PM, Bangsbo J (2015) Warm-Up Strategy and High Intensity Endurance Performance in Trained Cyclists. Int J Sports Physiol Perform 10(3): 353–360PubMedCrossRefGoogle Scholar
  40. Clasing D, Weicker H, Böning D (1994) Stellenwert der Laktatbestimmung in der Leistungdiagnostik. Gustav Fischer, StuttgartGoogle Scholar
  41. Clausen T (2013) Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: functional significance. J Gen Physiol 142: 327–345PubMedPubMedCentralCrossRefGoogle Scholar
  42. Conconi F, Ferrari M, Ziglio PG, Droghetti P, Codeca, L (1982) Determination of the anaerobic threshold by a noninvasive field test in runners. J Appl Physiol 52: 869–873PubMedGoogle Scholar
  43. Conconi F, Grazzi G, Casoni I, Guglielmini C, Borsetto C, Ballarin E, Mazzoni G, Patracchini M, Manfredini F (1996) The Conconi test: Methodology after 12 years of application. Int J Sports Med 17: 509–519PubMedCrossRefGoogle Scholar
  44. Corrado D, Basso C, Thiene G (2012) Sudden cardiac death in athletes: what is the role of screening? Curr Opin Cardiol 27: 41–48Google Scholar
  45. Dassonville J, Beillot J, Lessard Y, Jan J, Andre AM, LePourcelet C, Rochcongar P, Carre F (1998) Blood lactate concentration during exercise: effect of sampling site and exercise mode. J Sports Med Phys Fitness 38: 39–46PubMedGoogle Scholar
  46. Davis HA, Bassett J, Hughes P, Gass GC (1983) Anaerobic Threshold and Lactate Turnpoint. Eur J Appl Physiol 50: 383–392CrossRefGoogle Scholar
  47. Davis JK, Green JM (2009) Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med 39: 813–832PubMedCrossRefGoogle Scholar
  48. Denadai BS, Guglielmo LGA, Denadai MLDR (2000) Effect of Exercise Mode on the Blood Lactate Removal during Recovery of High-Intensity Exercise Biol Sport 17: 37–45Google Scholar
  49. Dean TM, Perreault L, Mazzeo RS, Horton TJ (2003) No effect of menstrual cycle phase on lactate threshold. J Appl Physiol 95: 2537–2543PubMedCrossRefGoogle Scholar
  50. Dennis SC, Noakes TD, Bosch AN (1992) Ventilation and blood lactate increase exponentially during incremental exercise. J Sports Sci 10: 437–449PubMedCrossRefGoogle Scholar
  51. Deruelle F, Nourry C, Mucci P, Bart F, Grosbois JM, Lensel G, Fabre C (2007) Optimal exercise intensity in trained elderly men and women. Int J Sports Med 28: 612–616PubMedCrossRefGoogle Scholar
  52. Dickhuth HH, Yin L, Niess A, Röcker K, Mayer F, Heitkamp HC, Horstmann T (1999) Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: relationship and reproducibility. Int J Sports Med 20, 2: 122–127PubMedGoogle Scholar
  53. Dotan R, Zigel L, Rotstein A, Greenberg T, Benyamini Y, Falk B (2011) Reliability and validity of the lactate-minimum test. A revisit. J Sports Med Phys Fitness 51: 42–49PubMedGoogle Scholar
  54. Draoui N, Feron O (2011) Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis Model Mech 4: 727–732PubMedPubMedCentralCrossRefGoogle Scholar
  55. Droghetti P, Borsetto C, Casoni I, Cellini M, Ferrari M, Paolini AR, Ziglio PG, Conconi F (1985) Noninvasive determination of the anaerobic threshold in canoeing, cross-country skiing, cycling, roller, and ice-skating, rowing, and walking. Eur J Appl Physiol Occup Physiol 53: 299–303PubMedCrossRefGoogle Scholar
  56. Ehrmann JK, Gordon PM, Visich PS, Keteyian SJ (2009) Clinical Exercise Physiology, 2nd ed. Human Kinetics, Champaign, ILLGoogle Scholar
  57. Emhoff CA, Messonnier LA, Horning MA, Fattor JA, Carlson TJ, Brooks GA (2013) Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. J Appl Physiol 114: 297–306PubMedCrossRefGoogle Scholar
  58. Emhoff CA, Messonnier LA, Horning MA, Fattor JA, Carlson TJ, Brooks GA (2013) Direct and indirect lactate oxidation in trained and untrained men. J Appl Physiol 115: 829–838PubMedCrossRefGoogle Scholar
  59. Esteve-Lanao J, San Juan AF, Earnest CP, Foster C, Lucia A (2005) How do endurance runners actually train? Relationship with competition performance. Med Sci Sports Exerc 37: 496–504PubMedCrossRefGoogle Scholar
  60. Fasching P, Rinnerhofer St, Wultsch G, Hofmann P (2014) First Lactate Turn Point: a limiting factor for heavy occupational work. Med Sci Sports Exerc 46: S545–546CrossRefGoogle Scholar
  61. Faude O, Meyer T (2008) Methodische Aspekte der Laktatbestimmung. Deutsch Ztschr Sportmed 592: 305–309Google Scholar
  62. Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts: how valid are they? Sports Med 39: 469–490Google Scholar
  63. Feliu J, Ventura JL, Segura R, Rodas G, Riera J, Estruch A, Zamora A, MacLean DA, Bangsbo J, Saltin B (1999) Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis. J Appl Physiol 87: 1483–1490Google Scholar
  64. Figley CR (2011) Lactate transport and metabolism in the human brain: implications for the astrocyte-neuron lactate shuttle hypothesis. J Neurosci 31: 4768–4770PubMedCrossRefGoogle Scholar
  65. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, Coke LA, Fleg JL, Forman DE, Gerber TC, Gulati M, Madan K, Rhodes J, Thompson PD, Williams MA (2013) American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology, Council on Nutrition, Physical Activity and Metabolism, Council on Cardiovascular and Stroke Nursing, and Council on Epidemiology and Prevention. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation 128: 873–934PubMedCrossRefGoogle Scholar
  66. Fürnschuss S (2010) Auswirkungen von lokalem Muskelausdauertraining der Beine auf die Laktatumstellpunkte beim Ergometertest. Unveröff. Dipl. Arb., Universität GrazGoogle Scholar
  67. Glenn TC, Martin NA, McArthur DL, Hovda D, Vespa PM Md, Horning MA, Johnson ML, Brooks GA (2015a) Endogenous nutritive support following traumatic brain injury: peripheral lactate production for glucose supply via gluconeogenesis. J Neurotrauma 32(11): 811–819PubMedPubMedCentralCrossRefGoogle Scholar
  68. Glenn TC, Martin NA, Horning MA, McArthur DL, Hovda D, Vespa PM Md, Brooks GA (2015b) Lactate: Brain Fuel in Human Traumatic Brain Injury. A Comparison to Normal Healthy Control Subjects. J Neurotrauma 32(11): 820–832PubMedPubMedCentralCrossRefGoogle Scholar
  69. MacLean DA, Bangsbo J, Saltin B (1999) Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis. J Appl Physiol 87: 1483–1490PubMedGoogle Scholar
  70. Fröhlich J, Urhausen A, Seul U, Kindermann W (1989) Beeinflussung der individuellen anaeroben Schwelle durch kohlehydratarme und -reiche Ernährung. Leistungssport 19: 18–20Google Scholar
  71. Gleeson TT (1996) Post-Exercise Lactate Metabolism: A Comparative Review of Sites, Pathways, and Regulation. Annu Rev Physiol 58: 565–581PubMedCrossRefGoogle Scholar
  72. Halestrap AP (2013) Monocarboxylic acid transport. Compr Physiol 3: 1611–1643PubMedCrossRefGoogle Scholar
  73. Hartleb C (2005) Laktatminimum. Eine Kenngröße zur Bestimmung der Ausdauerleistungsfähigkeit? Unveröffentl. Dipl. Arb., Universität GrazGoogle Scholar
  74. Hauser T, Adam J, Schulz H (2014) Comparison of selected lactate threshold parameters with maximal lactate steady state in cycling. Int J Sports Med 35: 517–521PubMedGoogle Scholar
  75. Hashimoto T, Hussien R, Brooks GA (2006) Colocalization of MCT1, CD147 and LDH in mitochondrial inner membrane of L6 cells: Evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab 290: E1237–E1244CrossRefGoogle Scholar
  76. Hashimoto T, Hussien R, Cho H-S, Kaufer D, Brooks GA (2008) Evidence for a mitochondrial lactate oxidation complex in rat neurons: a crucial component for a brain lactate shuttle. PLoS One 13: e2915CrossRefGoogle Scholar
  77. Heck H (1990) Laktat in der Leistungsdiagnostik. Hofmann, SchorndorfGoogle Scholar
  78. Heck H, Rosskopf P (1994) Grundlagen verschiedener Laktatschwellenkonzepte und ihre Bedeutung für die Trainingsleistung. In: Clasing D, Weicker H, Böning D. Stellenwert der Laktatbestimmung in der Leistungdiagnostik. G. Fischer, Stuttgart: 120–126Google Scholar
  79. Heck H, Philippi H, Rost R, Schürch P, Hollmann W (1976) Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Sportarzt u Sportmed 27: 80–88 und 109–112Google Scholar
  80. Heck H, Hess G, Mader A (1985) Vergleichende Untersuchung zu verschiedenen Laktat-Schwellenkonzepten. Dtsch Ztschr Sportmed 2: 40–52Google Scholar
  81. Hill DW (1996) Effect of time of day on aerobic power in exhaustive high-intensity exercise. J Sports Med Phys Fitness 36: 155–160PubMedGoogle Scholar
  82. Hill AV, Lupton H (1923) Muscular exercise, lactic acid and the supply and utilization of oxygen. Q J Med 16: 135–171CrossRefGoogle Scholar
  83. Hofmann P (1997) Die Laktat-Diagnostik im Sport – Einfluss der Ernährung. Labor Aktuell 5: 10–13Google Scholar
  84. Hofmann P (2007) Drei Phasen der Energiebereitstellung. medicalsports networks 3: 58–59Google Scholar
  85. Hofmann P (2009) Belastungsuntersuchungen und Protokolle. In: Pokan R, Benzer W, Gabriel H, Hofmann P, Kunschitz E, Mayr K, Samitz G, Schindler K, Wonisch M (Hrsg) Kompendium der kardiologischen Prävention und Rehabilitation. Springer, Wien New York: 191–196CrossRefGoogle Scholar
  86. Hofmann P, Pokan R (1996) Neue Erkenntnisse zur Herzfrequenz-Leistungskurve. In: Müller E, Schwameder H. Aspekte der Sportwissenschaft. Österr. Sportwissenschaftliche Gesellschaft 1996, 121–131Google Scholar
  87. Hofmann P, Pokan R (2010) Value of the application of the heart rate performance curve in sports. Int J Sports Physiol Perform 4: 437–447CrossRefGoogle Scholar
  88. Hofmann P, Tschakert G (2011) Special needs to prescribe exercise intensity for scientific studies. Cardiol Res Pract (Dec 15): 209–302Google Scholar
  89. Hofmann P, Leitner H, Gaisl G, Neuhold Ch (1988) Computerunterstützte Auswertung des modifizierten CONCONI-Tests am Fahrradergometer. Leistungssport 18: 26–27Google Scholar
  90. Hofmann P, Leitner H, Gaisl G (1992) Heart rate threshold, lactate turn point and anaerobic threshold determination by electromyography. Hung Rev of Sports Med 33: 13–20Google Scholar
  91. Hofmann P, Bunc V, Leitner H, Pokan R, Gaisl G (1994a) Heart Rate Threshold Related to Lactate Turn Point and Steady State Exercise on Cycle Ergometer. Eur J Appl Physiol 69: 132–139CrossRefGoogle Scholar
  92. Hofmann P, Pokan R, Preidler K, Leitner H, Szolar D, Eber B, Schwaberger G (1994b) Relationship between heart rate threshold, lactate turn point and myocardial function. Int J Sports Med 15: 232–237PubMedCrossRefGoogle Scholar
  93. Hofmann P, Peinhaupt G, Leitner H, Pokan R (1995a) Evaluation of Heart Rate Threshold by means of Lactate Steady State and Endurance Tests in White Water Kayakers. In: Viitasoalo JT, Kujala U (eds) The Way To Win. Proceedings of the International Congress on Applied Research in Sports held in Helsinki, Finland, on 9–11 August 1994, The Finnish Society for Research in Sport and Physical Education, Helsinki 1995, pp 217–220Google Scholar
  94. Hofmann P, Wiesspeiner G, Pokan R (1995b) Arterial Oxygen Saturation during graded cycle ergometer exercise related to aerobic and anaerobic lactate threshold. VIIIth FIMS European Congress of Sports Medicine, Granada 1995: p 130Google Scholar
  95. Hofmann P, Wiesspeiner G, Pokan R (1995c) Puls Oxymetrie – Möglichkeiten in der nichtinvasiven Leistungsdiagnostik. ÖJSM 25: 72–75Google Scholar
  96. Hofmann P, Peinhaupt G, Pokan R, Zweiker R (1996a) Relationship between treadmill performance and sport specific performance in white water kayakers. 1st Annual Congress of the College of Sport Science, Nice, May 28–31:664–665Google Scholar
  97. Hofmann P, Pokan R, Beaufort F, Schumacher M, Fruhwald FM, Zweiker R, Eber B, Gasser R et al. (1996b) Left ventricular function during incremental cycle ergometer exercise related to aerobic and anaerobic threshold in patients after myocardial infarction, healthy older subjects and young sports students. In: Chytrackova J, Kohoutek M (eds) Sport Kinetics 95. Charles University, Prag, pp 192–198Google Scholar
  98. Hofmann P, Pokan R, Seibert F-J, Zweiker R, Schmid P (1997a) The heart rate performance curve during incremental cycle ergometer exercise in healthy young male subjects. Med Sci Sports Exerc 29: 762–768PubMedCrossRefGoogle Scholar
  99. Hofmann P, Seibert F-J, Öhlknecht A, Sudi KM, Pokan R, Schmid P (1997b) Relationship between lactate turn points and potassium and sodium response during incremental cycle ergometer exercise. The Second Annual Congress of the European College of Sport Science Copenhagen, Denmark 20.–23. August 1997, pp 976–977Google Scholar
  100. Hofmann P, Lamprecht M, Schwaberger G, Pokan R, von Duvillard SP (1998a) Einfluss unterschiedlicher Diätformen auf die Laktatleistungskurve im Stufentest und das Laktatverhalten bei Dauerbelastung auf dem Fahrradergometer – Eine Einzelfallstudie. Dtsch Ztschr Sportmed 49: 80–85Google Scholar
  101. Hofmann P, Pokan R, von Duvillard SP (1998b) Influence of step length during incremental exercise on the heart rate performance curve. Med Sci Sports Exerc 30, Suppl: 242CrossRefGoogle Scholar
  102. Hofmann P, Seibert F-J, Öhlknecht A, Sudi KM, Pokan R, Schmid P (1998a) Relationship between blood potassium level and the deflection of the heart rate performance curve. Int J Sports Med 19: 25Google Scholar
  103. Hofmann P, Seibert F-J, Pokan R, Golda M, Wallner D, von Duvillard SP (1999) Relationship between blood pH, potassium and the heart rate performance curve. Med Sci Sports Exerc 31: 150CrossRefGoogle Scholar
  104. Hofmann P, Pokan R, von Duvillard SP (2000) Heart rate performance curve and heart rate turn point. Acta Universitatis Tartuensis 5: 23–43Google Scholar
  105. Hofmann P, Hartleb C, Wonisch M, Schwaberger G, Pokan R, von Duvillard SP (2006) Lactate-Minimum and Lactate Turn Point. In: Hoppeler H, Reilly T, Tsolakidis E, Gfeller L, Klossner S (eds) ECSS Lausanne 06 Book of Abstracts: p 445Google Scholar
  106. Hofmann P, Jürimäe T, Jürimäe J, Purge P, Maestu J, Wonisch M, Pokan R, von Duvillard SP (2007) HRTP, prolonged ergometer exercise, and single sculling. Int J Sports Med 28: 964–969PubMedCrossRefGoogle Scholar
  107. Hofmann P, Dohr K, Seibert F-J, Wonisch M, Pokan R, Smekal G, Schwaberger G (2008) Relationship between Lactate Turn Point and Maximal Performance in Young Healthy Male and Female Subjects of Different Exercise Performance Level. In: Cabri J, Alves F, Araujo D, Barreiros J, Diniz J, Veloso A (eds) Book of Abstracts of the 13th Congress of the European College of Sport Science, 9–12 July 2008 Estoril, Portugal: 470Google Scholar
  108. Hofmann P, Wonisch M, Pokan R (2009) Laktat-Leistungs-Diagnostik. In: Pokan R, Benzer W, Gabriel H, Hofmann P, Kunschitz E, Mayr K, Samitz G, Schindler K, Wonisch M (Hrsg) Kompendium der kardiologischen Prävention und Rehabilitation. Springer, Wien New York, S 225–246CrossRefGoogle Scholar
  109. Hofmann P, Tschakert G, Pokan R, von Duvillard SP (2010) Three-Phase Time Course of Physiological Variables During Incremental Cycling in Young Male and Female Subjects. Med Sci Sports Exerc 42: S238CrossRefGoogle Scholar
  110. Hofmann P, Tschakert G, Schwarz H, Mueller A, Groeschl W, Pokan R, von Duvillard SP (2012) Three Phase Response of Blood Lactate Concentration in Incremental and Constant Load Exercise. Med Sci Sports Exerc 44: S709–710CrossRefGoogle Scholar
  111. Hollmann W, Strüder KH (2009) Sportmedizin. Grundlagen für körperliche Aktivität, Training und Präventivmedizin, 5. Aufl. Schattauer, StuttgartGoogle Scholar
  112. Inbar O, Bar-Or O, Skinner JS (1996) The Wingate Anaerobic Test. Human Kinetics, Champaign, ILLGoogle Scholar
  113. Ivy JL, Costill DL, Van Handel PJ, Essig DA, Lower RW (1981) Alteration in the lactate threshold with changes in substrate availability. Int J Sports Med 2: 139-142PubMedCrossRefGoogle Scholar
  114. Kargotich S, Goodman C, Keast D, Morton AR (1998) The Influence of Exercise-Induced Plasma Volume Changes on the Interpretation of Biochemical Parameters Used for Monitoring Exercise, Training and Sport. Sports Med 26: 101–117PubMedCrossRefGoogle Scholar
  115. Karlsson J (1971) Lactate in working muscles after prolonged exercise. Acta Physiol Scand 82: 123–130PubMedCrossRefGoogle Scholar
  116. Karlsson J, Jacobs I (1982) Onset of Blood Lactate Accumulation during Muscular Exercise as a Threshold Concept. I. Theoretical Considerations. Int J Sports Med 3: 190–210PubMedCrossRefGoogle Scholar
  117. Karapetian GK, Engels HJ, Gretebeck KA, Gretebeck RJ (2012) Effect of caffeine on LT, VT and HRVT. Int J Sports Med 33: 507–513PubMedCrossRefGoogle Scholar
  118. Keul J, Simon G, Berg A, Dickhut HH, Goerttler I, Kübel R (1979) Bestimmung der individuellen anaeroben Schwelle zur Leistungsbewertung und Trainingsgestaltung. Dtsch Ztschr Sportmed 7: 212–218Google Scholar
  119. Kindermann W, Keul J (1977) Anaerobe Energiebereitstellung im Hochleistungssport. Die Bedeutung der metabolischen Azidose unter physiologischen und pathologischen Bedingungen. Wissenschaftliche Schriftenreihe des Deutschen Sportbundes, Bd 13. Hofmann, SchorndorfGoogle Scholar
  120. Kindermann W, Simnon G, Keul J (1979) The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol 42: 25–34CrossRefGoogle Scholar
  121. Leitner H, Hofmann P, Gaisl G (1988) A method for the microcomputer aided determination of the anaerobic threshold by means of heart rate curve analysis. Conference Proceedings 15 years: Biomedical Engineering in Austria 88 Graz (June): 136–141Google Scholar
  122. Leitner H, Hofmann P, Leitner K (1992) Software zur Auswertung von Herzfrequenz und Laktatwerten in der Leistungsdiagnostik. Österr J Sportmed 22: 115–118Google Scholar
  123. Leitner H, Hofmann P, Leitner K (1994) Anwendung der Fuzzy Logik zur Schwellenbestimmung in der Leistungsdiagnostik. In: Liesen H, Weiss M, Baum M (Hrsg) Regulations- und Repairmechanismen. 33. Deutscher Sportärztekongress Paderborn 1993. Deutscher Ärzte Verlag, Köln, S 197–199Google Scholar
  124. Mader A, Heck H (1986) A theory of the metabolic origin of “anaerobic threshold”. Int J Sports Med 7, Suppl 1: 45–65PubMedCrossRefGoogle Scholar
  125. Mader A, Liesen H, Heck H, Philippi H, Rost R, Schürch P, Hollmann W (1976) Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Sportarzt und Sportmedizin 27: 80–88 und 109–112Google Scholar
  126. Maud PJ, Foster C (eds) (1995) Physiological Assessment of Human Fitness. Human Kinetics, Champaign, ILLGoogle Scholar
  127. McCaughan HMC, McRae RZ, Smith HK (2000) The Stability of Lactate Concentration in Preserved Blood Microsamples. Int J Sports Med 21: 37–40PubMedCrossRefGoogle Scholar
  128. McClelland GB, Khanna S, Gonzalez G, Butz CE, Brooks GA (2003) Peroxisomal membrane monocarboxylate transporters: evidence for a redox shuttle system? Biochem Biophys Res Commun 203: 130–135CrossRefGoogle Scholar
  129. McNaughton LR, Thompson D, Philips G, Bachx K, Crickmore L (2002) A comparison of the lactate pro, accusport, analox and kodak ektachem lactate analysers in normal, hot and humid conditions. Int J Sports Med 23: 130–135CrossRefGoogle Scholar
  130. MacRae HH, Noakes TD, Dennis SC (1995) Effects of endurance training on lactate removal by oxidation and gluconeogenesis during exercise. Pflugers Arch 430: 964–970PubMedCrossRefGoogle Scholar
  131. Maassen N, Busse MW (1989) The relationship between lactic acid and work load: a measure for endurance capacity or an indicator of carbohydrate deficiency? Eur J Appl Physiol 58: 728–737CrossRefGoogle Scholar
  132. Medbo Jl, Mamen A, Holt Olsen O, Evertsen F (2000) Examination of four different instruments for measuring blood lactate concentration. Scand J Lab Invest 60: 367–380CrossRefGoogle Scholar
  133. Meyer T, Lucía A, Earnest CP, Kindermann W (2005) A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters – theory and application. Int J Sports Med 26, Suppl 1: S38–48CrossRefGoogle Scholar
  134. Meyerhof O (1920) Die Energieumwandlungen im Muskel III. Kohlenhydrat und Milchsaureumsatz im Froschmuskel. Pflügers Arch ges Physiol 185: 11–32CrossRefGoogle Scholar
  135. Müller A, Tschakert G, Moser O, Gröschl W, Hofmann P (2014) High intensity exercise warm-up, inhibition of glycolysis and its practical consequences. 6th International Congress on Science and Skiing 2013, St. Christoph a. A., Austria. In: Müller E, Kröll J, Lindinger S, Pfusterschmied J, Stöggl T (eds) Science and Skiing VI. Meyer & Meyer Sport, Maidenhead (UK), pp 224–230Google Scholar
  136. Mujika I (2012) The cycling physiology of Miguel Indurain 14 years after retirement. Int J Sports Physiol Perform 7: 397–400PubMedCrossRefGoogle Scholar
  137. Muñoz I, Seiler S, Bautista J, España J, Larumbe E, Esteve-Lanao J (2014a) Does polarized training improve performance in recreational runners? Int J Sports Physiol Perform 9: 265–272PubMedCrossRefGoogle Scholar
  138. Muñoz I, Cejuela R, Seiler S, Larumbe E, Esteve-Lanao J (2014b) Training-intensity distribution during an ironman season: relationship with competition performance. Int J Sports Physiol Perform 9: 332–339PubMedCrossRefGoogle Scholar
  139. Muntean P (2014) Kapilläre Blutgasanalyse und Leistungsdiagnostik bei stufenförmiger Belastungsergometrie. Unveröffentl. Dipl. Arb., Universität GrazGoogle Scholar
  140. Morton RH, Fukuba Y, Banister EW, Walsh ML, Kenny CTC, Cameron BJ (1994) Statistical evidence consistent with two lactate turnpoints during ramp exercise. Eur J Appl Physiol 69: 445–449CrossRefGoogle Scholar
  141. Natmessnig H (2014) Methodische Untersuchung zum aeroben Intervalltraining unter Berücksichtigung ergometrischer Kenndaten. Unveröff. Dipl. Arb., Universität GrazGoogle Scholar
  142. Naveri HK, Leinonen H, Kiilavuori K, Harkonen M (1997) Skeletal muscle lactate accumulation and creatine phosphate depletion during heavy exercise in congestive heart failure cause of limited exercise capacity. Eur Heart J 18: 1937–1945PubMedCrossRefGoogle Scholar
  143. Neumann G, Schüler KP (1994) Sportmedizinische Funktionsdiagnostik. Sportmedizinische Schriftenreihe, Bd. 29. Johann Ambrosius Barth, LeipzigGoogle Scholar
  144. Ofner M, Wonisch M, Frei M, Tschakert G, Domej W, Kröpfl JM, Hofmann P (2014) Influence of acute normobaric hypoxia on physiological variables and lactate turn point determination in trained men. J Sports Sci Med 13: 774–781PubMedPubMedCentralGoogle Scholar
  145. Pansold B, Zinner J (1994) Die Laktat-Leistungskurve – ein Analyse- und Interpretationsmodell der Leistungsdiagnostik im Schwimmen. In: Ciasing D, Weicker H, Böning D (Hrsg) Stellenwert der Laktatbestimmung in der Leistungdiagnostik. Gustav Fischer, Stuttgart, S 47–64Google Scholar
  146. Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20: 291–299PubMedCrossRefGoogle Scholar
  147. Petter F, Malatschnig R, Gröschl W, Müller W, Schwaberger G, Hofmann P (2006) Lactate kinetics depend on the on-phase power setting. Isokin. Exerc Sci 14: 185–186Google Scholar
  148. Platonov NV (1999) Belastung – Ermüdung – Leistung. Der moderne Trainingsaufbau. Trainer Bibliothek 34. Philippka Sportverlag, BerlinGoogle Scholar
  149. Pokan R, Enne R, Hofmann P, Smekal G, von Duvillard SP, Leitner H, Bachl N, Schmid P (1998) Performance diagnostics in aging women and men. Int J Sports Med 19: 28Google Scholar
  150. Pokan R, Hofmann P, von Duvillard SP, Rohrer A, Smekal G, Fruhwald FM et al. (2000) Exercise testing in cardiovascular diseased patients – lactate turn points versus gas exchange variables. Med Sci Sports Exerc 32: S143CrossRefGoogle Scholar
  151. Pokan R, Hofmann P, Smekal G, Wonisch M, Bachl N, Schmid P (2002) Leistungsdiagnostik zur Trainingssteuerung in der Bewegungstherapie von Herz-Kreislauferkrankungen. Inter Prax 42(4): 797–806Google Scholar
  152. Pokan R, Gabriel H, Hörtnagl H, Podolsky A, Vonbank K, Wonisch M für die AG Kardiologische Rehabilitation und Sekundärprävention der ÖKG und die AG für theoretische und klinische Leistungsmedizin der Universitätslehrer Österreichs (2009) Empfehlungen für den internistischen Untersuchungsgang in der Sportmedizin. J Kardiol 16(11–12): 404–411Google Scholar
  153. Pokan R, Ocenasek H, Hochgatterer R, Miehl M, Vonbank K, Von Duvillard SP, Franklin B, Würth S, Volf I, Wonisch M, Hofmann P (2014) Myocardial dimensions and hemodynamics during 24-h ultra-endurance ergometry. Med Sci Sports Exerc 46: 268–275PubMedCrossRefGoogle Scholar
  154. Ribeiro LF, Gonçalves CG, Kater DP, Lima MC, Gobatto CA (2009) Influence of recovery manipulation after hyperlactemia induction on the lactate minimum intensity. Eur J Appl Physiol 105: 159–165PubMedCrossRefGoogle Scholar
  155. Rinnerhofer S (2012) Körperliche Leistungsfähigkeit und gemessener Energieverbrauch bei unterschiedlichen berufstypischen Tätigkeiten – Entwicklung von Normwerten. Unveröffentl. Diss., Universität GrazGoogle Scholar
  156. Robergs RA, Chwalbinska-Moneta J, Mitchell JB, Pascoe DD, Houmard J, Costill DL (1990) Blood lactate threshold differences between arterialized and venous blood. Int J Sports Med 11: 446–451PubMedCrossRefGoogle Scholar
  157. Rodriguez FA, Banquells M, Pons V, Drobnic F, Galilea PA (1992) A comparative study of blood lactate analytic methods. Int J Sports Med 13: 462–466PubMedCrossRefGoogle Scholar
  158. Rusko H, Luhtanen P, Rahkila P, Viitasalo J, Rehunen S, Härkönen M (1986) Muscle metabolism, blood lactate and oxygen uptake in steady state exercise at aerobic and anaerobic thresholds. Eur J Appl Physiol 55: 181–186CrossRefGoogle Scholar
  159. Schwaberger G, Pessenhofer H, Schmid P, Kohla B, Sauseng N, Kenner T (1991) Anaerobic two-phase test in cyclists. In: Bachl N, Graham TE, Löllgen H (eds) Advances in Ergometry. Springer, Berlin Heidelberg New York Tokyo, pp 153–161CrossRefGoogle Scholar
  160. Seiler KS, Kjerland GØ (2006) Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports 16: 49–56PubMedCrossRefGoogle Scholar
  161. Sjödin B, Jacobs I (1981) Onset of blood lactate accumulation and marathon running performance. Int J Sports Med 2: 23–26PubMedCrossRefGoogle Scholar
  162. Skinner JS, McLellan TH (1980) The transition from aerobic to anaerobic metabolism. Res Q Exerc Sport 51: 234–248PubMedCrossRefGoogle Scholar
  163. Smekal G, von Duvillard SP, Rihacek C, Pokan R, Hofmann P, Baron R, Tschan H, Bachl N (2001) A physiological profile of tennis match play. Med Sci Sports Exerc 33: 999–1005PubMedCrossRefGoogle Scholar
  164. Smekal G, Scharl A, von Duvillard SP, Pokan R, Baca A, Baron R, Tschan H, Hofmann P, Bachl N (2002) Accuracy of neuro-fuzzy logic and regression calculations to determine maximal lactate steady state power output from incremental tests. Eur J Appl Physiol 88: 264–274PubMedCrossRefGoogle Scholar
  165. Smekal G, von Duvillard SP, Pokan R, Lang K, Tschan H, Hofmann P, Bachl N (2003a) Respiratory gas exchange end lactate measures during competitive orienteering. Med Sei Sports Exerc 35(4): 682–689CrossRefGoogle Scholar
  166. Smekal G, von Duvillard SP, Pokan R, Tschan H, Baron R, Hofmann P, Wonisch M, Bachl N (2003b) Changes in blood lactate and respiratory of gas exchange measures in sports with discontinuous load profiles. Eur J Appl Physiol 89: 489–495PubMedCrossRefGoogle Scholar
  167. Smekal G, von Duvillard SP, Frigo P, Tegelhofer T, Pokan R, Hofmann P, Tschan H, Baron R, Wonisch M, Renezeder K, Bachl N (2007) Menstrual cycle: no effect on exercise cardiorespiratory variables or blood lactate concentration. Med Sci Sports Exerc 39: 1098–106PubMedCrossRefGoogle Scholar
  168. Sonveaux P, Vegran F, Schroeder T,Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B,Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118: 3930–3942PubMedPubMedCentralGoogle Scholar
  169. Stegmann H, Kindermann W (1981) Bestimmung der individuellen anaeroben Schwelle bei unterschiedlich Ausdauertrainierten aufgrund des Verhaltens der Lactatkinetik während der Arbeits- und Erholungsphase. Dtsch Z Sportmed 32: 213–221Google Scholar
  170. Stegmann H, Kindermann W, Schabel A (1981) Lactate kinetics and individual anaerobic threshold. Int J Sports Med 2: 160–165PubMedCrossRefGoogle Scholar
  171. Strauzenberg SE, Gürtler H, Hannemann D, Tittel K (Hrsg) (1990) Sportmedizin. Grundlagen der sportmedizinischen Betreuung. Johann Ambrosius Barth Verlag, LeipzigGoogle Scholar
  172. Stühlinger N (2010) Untersuchung der Grundlagen der Dmax Methode zur Bestimmung der anaeroben Schwelle – Vergleich mit Standardmethoden. Unveröffentl. Dipl. Arbeit, Universität GrazGoogle Scholar
  173. Taoutaou Z, Granier P, Mercier B, Mercier J, Ahmaidi S, Prefaut C (1996) Lactate kinetics during passive and partially active recovery in endurance and sprint athletes. Eur J Appl Physiol 73: 465–470CrossRefGoogle Scholar
  174. Tegtbur U, Busse MW, Braumann KM (1993) Estimation of an individual equilibrium between lactate production and catabolism during exercise. Med Sei Sports Exerc 25(5): 620–627Google Scholar
  175. Tønnessen E, Svendsen IS, Rønnestad BR, Hisdal J, Haugen TA, Seiler S (2015) The annual training periodization of 8 world champions in orienteering. Int J Sports Physiol Perform 10: 29–38PubMedCrossRefGoogle Scholar
  176. Tschakert G, Hofmann P (2013) High-intensity intermittent exercise: methodological and physiological aspects. Int J Sports Physiol Perform 8: 600–610PubMedCrossRefGoogle Scholar
  177. Tschakert G, Kroepfl J, Mueller A, Moser O, Groeschl W, Hofmann P (2015) Ho to regulate the acute physiological response to „aerobe“ high-intensity interval exercise. J Sport Sci Med 14(1): 29–36Google Scholar
  178. Urhausen A, Coen B, Weiler B, Kindermann W (1993) Individual anaerobic threshold and maximum lactate steady state. Int J Sports Med 14: 134–139PubMedCrossRefGoogle Scholar
  179. van Hall G, Strømstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH, Nielsen HB (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29: 1121–1129PubMedCrossRefGoogle Scholar
  180. Von Duvillard SP, Pokan R, Hofmann P, Plaud JJ, Smith T, Brinkert R (1998) The effect of equal load and different pedal rates on respiratory gas exchange measures and lactate concentration in healthy young males. Med Sci Sports Exerc 30(5), Suppl: 14CrossRefGoogle Scholar
  181. von Duvillard SP, Hofmann P, Pokan R (2000) Metabolic and EMG changes resulting from a series of supra-maximal modified Wingate tests in competitive alpine skiers in the laboratory. Med Sci Sports Exerc 32(5): S360Google Scholar
  182. von Duvillard SP, Hofmann P, Schwaberger G, Pokan R, Meyer N, Rausch W (2001) Metabolic changes resulting from a series of consecutive supra-maximal laboratory tests in competitive alpine ski racers. In: Müller E, Schwameder H, Raschner C et al. (eds) Science and Skiing II. Schriftenreihe Schriften zur Sportwissenschaft, Bd 26. Verlag Dr. Kovac, Hamburg, S 469–479Google Scholar
  183. Vuorimaa T, Häkkinen K, Vähäsöyrinki P, Rusko H (1996) Comparison of three maximal anaerobic running test protocols in marathon runners, middle-distance runners and sprinters. Int J Sports Med 17: 109–113CrossRefGoogle Scholar
  184. Wallner D, Simi H, Burgsteiner H, Hofmann P (2013) Validity of Lactate Turn Points of trained and untrained subjects while treadmill running. In: Balague N, Torrents C, Vilanova A et al.: Book of Abstracts18th Annual of the annual Congress of the European College of Sport Science 26th–29th June, 2013: 683Google Scholar
  185. Wasserman K (1986) The anaerobic threshold: definition, physiological significance and identification. Adv Cardiol 35: 1–23PubMedCrossRefGoogle Scholar
  186. Wasserman K, Mcllroy MB (1964) Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 14: 844–852PubMedCrossRefGoogle Scholar
  187. Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ (2005) Principles of Exercise Testing and Interpretation. Including Pathophysiology and Clinical Applications, 4th ed. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  188. Windisch V (2012) Belastungsprofil und Beanspruchung bei Training und Wettkampf in der Sportart „Short Track“ und Vergleiche zu leistungsdiagnostischen Kenndaten. Unveröffent. Dipl. Arb., Universität GrazGoogle Scholar
  189. Wonisch M, Hofmann P, Fruhwald FM, Hoedl R, Schwaberger G, Pokan R, von Duvillard, SP, Klein W (2002) Effect of ß1-selective adrenergic blockade on maximal lactate steady state in healthy men. Eur J Appl Physiol 87: 66–71PubMedCrossRefGoogle Scholar
  190. Wonisch M, Hofmann P, Schwaberger G, von Duvillard SP, Klein W (2003) Validation of a field test for the non-invasive determination of badminton specific aerobic performance. Br J Sports Med 37(2): 115–118PubMedPubMedCentralCrossRefGoogle Scholar
  191. Wultsch G, Rinnerhofer S, Tschakert G, Hofmann P (2012) Governmental regulations for early retirement by means of energy expenditure cut offs. Scand J Work Environ Health 38(4): 370–379PubMedCrossRefGoogle Scholar
  192. Yoshida T (1984) Effect of dietary modifications on lactate threshold and onset of blood lactate accumulation during incremental exercise. Eur J Appl Physiol 53: 200–205CrossRefGoogle Scholar
  193. Zechner N (2011) Bestimmung von Umstellpunkten in der Herzfrequenz und Herzfrequenzvariabilität bei stufenförmiger ansteigender Ergometerbelastung im Vergleich zu metabolischen und respiratorischen Umstellpunkten. Dipl. Arb., Universität GrazGoogle Scholar
  194. Zinner J, Pansold B, Buckwitz R (1993) Computergesteuerte Auswertung von Stufentests in der Leistungsdiagnostik. Leistungssport 2: 21–26Google Scholar
  195. Zintl F (1988) Ausdauertraining. Grundlagen, Methoden, Trainingssteuerung. Blv sportwissen Nr. 416. BLV Verlag, MünchenGoogle Scholar
  196. Zois J, Bishop D, Aughey R (2015) High-intensity Warm up Improves Performance During Subsequent Intermittent Exercise. Int J Sports Physiol Perform 10(4): 498–503PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Institute of Sports Science Exercise Physiology, Training & Training Therapy Research GroupUniversity of GrazGrazÖsterreich
  2. 2.Facharzt für Innere Medizin und Kardiologie,Sportwissenschafter FranziskusspitalWienÖsterreich
  3. 3.Institut für SportwissenschaftWienÖsterreich

Personalised recommendations