Funktionsdiagnostik akuter und chronischer Anpassung der Atmungsorgane (Spiroergometrie)

Chapter

Zusammenfassung

Die Spiroergometrie ist ein diagnostisches Verfahren, mit dem qualitativ und quantitativ die Reaktionen und das Zusammenspiel von Herz, Kreislauf, Atmung und Stoffwechsel während einer kontinuierlich ansteigenden Belastung analysiert werden.

Literatur

  1. Beaver Wl, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60: 2020–2027PubMedGoogle Scholar
  2. Casaburi R, Storer TW, Ben-Dov I, Wasserman K (1987) Effect of endurance training on possible determinants of VO2 during heavy exercise. J Appl Physiol 62: 199–207PubMedGoogle Scholar
  3. Fleg JL, Pina IL, Balady JG, Chaitman BR, Fletcher B, Lavie C, Limacher MC, Stein RA, Williams M, Bazzarre T (2000) Assessment of functional capacity in clinical and research applications. An advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association. Circulation 102: 1591–1597CrossRefPubMedGoogle Scholar
  4. Hollmann W, Prinz JP (1994) Zur Geschichte und klinischen Bedeutung der kardiopulmonalen Arbeitsuntersuchung unter besonderer Berücksichtigung der Spiroergometrie. Z Kardiol 83: 247–257PubMedGoogle Scholar
  5. Jones NL (1997) Clinical exercise testing, 4th ed. W.B. Saunders Company, PhiladelphiaGoogle Scholar
  6. Itoh H, Taniguchi K, Koike A, Doi M (1990) Evaluation of severity of heart failure using ventilatory gas analysis. Circulation 81, Suppl II: II31–II37Google Scholar
  7. Wasserman K (1988) New concepts in assessing cardiovascular function. Circulation 78: 1060–1071CrossRefPubMedGoogle Scholar
  8. Wasserman K, Beaver W, Whipp BJ (1990) Gas exchange theory and the lactic acidosis (anaerobic) threshold. Circulation 81, Suppl II: II14–II30CrossRefGoogle Scholar
  9. Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R (2000) Principles of exercise testing and interpretation, 3rd ed. Williams & Wilkins, PhiladelphiaGoogle Scholar

Weiterführende Literatur

  1. Dempsey JA, Wagner PD (1999) Exercise-induced arterial hypoxemia. J Appl Physiol 87: 1997–2006PubMedGoogle Scholar
  2. Dempsey JA, Shell AW, Derchak PA, Harms CA (2000) Mögliche Einschränkungen der sportlichen Belastbarkeit durch das Atmungssystem. Deutsch Z Sportmed 51: 318–326Google Scholar
  3. Hagberg JM, Yerg JE 2nd, Seals DR (1988) Pulmonary function in young and older athletes and untrained men. J Appl Physiol 65: 101–105PubMedGoogle Scholar
  4. Hopkins SR (2002) Nahe am Limit: Die Lunge bei maximaler körperlicher Belastung. Deutsch Z Sportmed 53: 277–284Google Scholar
  5. Hollmann W, Hettinger T (2000) Sportmedizin – Grundlagen für Arbeit, Training, Präventivmedizin. Schattauer, StuttgartGoogle Scholar
  6. Kukafka DS, Lang DM, Porer S, Rogers J, Cicolella D, Polansky M, D’Alonzo GE Jr (1998) Exercise-induced bronchospasm in high school athletes via a free running test: incidence and epidemiology. Chest 114: 1613–1622CrossRefPubMedGoogle Scholar
  7. Larsson KP, Ohlsen P, Rydström P, Ulriksen (1993) High prevalence of asthma in cross country skiers. Br Med J 307: 1326–1329CrossRefGoogle Scholar
  8. Linderholm H (1959) Diffusing capacity of the lungs as a limiting factor for physical working capacity. Acta Med Scand 162: 61–66Google Scholar
  9. Löllgen H, Erdmann E (2000) Ergometrie – Belastungsuntersuchungen in Klinik und Praxis, 2. Aufl. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  10. Markov G, Spengler CM, Knöpfli-Lenzin C, Stuessi C, Boutellier U (2001) Respiratory muscle training increases cycling endurance without affecting cardiovascular response to exercise. Eur J Appl Physiol 85: 233–239CrossRefPubMedGoogle Scholar
  11. Myers JN (1996) Essentials of cardiopulmonary exercise testing. Human Kinetics. ChampaignGoogle Scholar
  12. Robinson EP, Kjeldgaard JM (1982) Improvement in ventilatory muscle function with running. J Appl Physiol 52: 1400–1405PubMedGoogle Scholar
  13. Romer LM, McConell AK, Jones DA (2002) Inspiratory muscle fatigue in trained cyclists: effects of inspiratory muscle training. Med Sci Sports Exerc 34: 785–792CrossRefPubMedGoogle Scholar
  14. Storms WW (1999) Exercise-induced asthma: diagnosis and treatment for the recreational or elite athlete. Med Sci Sports Exerc 31: S33–S38CrossRefGoogle Scholar
  15. Stuessi C, Spengler CM, Knöpfli-Lenzin C, Markov G, Boutellier U (2001) Respiratory muscle endurance training in humans increases cycling endurance without affecting blood gas concentration. Eur J Appl Physiol 84: 582–586CrossRefPubMedGoogle Scholar
  16. Tan RA, Spector SL (2002) Asthma and Exercise. In: Weisman IM, Zeballos RJ (eds) Clinical exercise testing. Prog Resp Res, Vol 32. Karger, Basel, pp 205–216CrossRefGoogle Scholar
  17. Weisman IM, Zeballos RJ (2002) Clinical exercise testing. Prog Respir Res, Vol 32. Karger, BaselCrossRefGoogle Scholar
  18. Wilber RL, Rundell KW, Szmedra L, Jenkinson DM, Im J, Drake SD (2000) Incidence of exerciseinduced bronchospasm in Olympic winter sport athletes. Med Sci Sports Exerc 32: 732–737CrossRefPubMedGoogle Scholar
  19. Williams JS, Wongsathikun J, Boon SM, Acevedo EO (2002) Inspiratory muscle training fails to improve endurance capacity in athletes. Med Sci Sports Exerc34: 1194–1198CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Facharzt für Innere Medizin und Kardiologie,Sportwissenschafter FranziskusspitalWienÖsterreich
  2. 2.Institut für SportwissenschaftWienÖsterreich
  3. 3.Institute of Sports Science Exercise Physiology, Training & Training Therapy Research GroupUniversity of GrazGrazÖsterreich

Personalised recommendations