Funktionsdiagnostik akuter und chronischer Anpassung des Herz-Kreislauf-Systems an körperliche Belastungen

  • Rochus Pokan
  • Peter Hofmann
  • Manfred Wonisch
  • Helmut Hörtnagl


Unter einer Trainingsadaptation des Herz-Kreislauf-Systems versteht man eine durch Training bedingte physiologische Anpassung, die letztlich in eine erhöhte Leistungsfähigkeit mündet. Eindeutig belegt sind solche Trainingswirkungen vor allem für das Ausdauertraining bzw. für chronisch dynamische Belastungsformen. Bei anderen motorischen Beanspruchungsformen, wie Krafttraining bzw. statisches Training oder Schnelligkeitstraining, sind nur minimale oder keine Effekte auf das Herz-Kreislauf-System nachweisbar.


  1. ACSM’s resource manual for guidelines for exercise testing and prescription, 4th ed (2001). Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  2. Adams TD, Yanowitz FG, Fisher AG, Ridges JD, Lovell K, Pryor TA (1981) Noninvasive evaluation of exercise training in college-age men. Circulation 64: 958–965PubMedCrossRefGoogle Scholar
  3. Aubert AE, Ramaekers D (1999) Neurocardiology: the benefits of irregularity. The basics of methodology, physiology and current clinical applications. Acta Cardiol 54(3): 107–120PubMedGoogle Scholar
  4. Aubert H, Seps B, Beckers F (2003) Heart rate variability in athletes. Sports Med 33(12): 889–919PubMedCrossRefGoogle Scholar
  5. Ballarin E, Sudhues U, Borsetto C, Casoni I, Grazzi G, Guglielmini C, Manfredini F, Mazzoni G, Conconi F (1996) Reproducibility of the Conconi test: test repeatability and observer variations. Int J Sports Med 17(7): 520–4.PubMedCrossRefGoogle Scholar
  6. Ballarin E, Borsetto C, Cellini M, Patracchini M, Vitiello P, Ziglio PG, Conconi F (1989) Adaptation of the “Conconi test” to children and adolescents. Int J Sports Med 10(5): 334–8PubMedCrossRefGoogle Scholar
  7. Bianco M, Bria S, Gianfelici A, Sanna N, Palmieri V, Zeppilli P (2001) Does early repolarization in the athlete have analogies with the Brugada syndrome? Eur Heart J 22: 504–510PubMedCrossRefGoogle Scholar
  8. Bodner ME, Rhodes EC (2000) A Review of the concept of the heart rate deflection point. Sports Med 30: 31–46PubMedCrossRefGoogle Scholar
  9. Borresen J, Lambert MI (2008) Autonomic control of heart rate during and after exercise: measurements and implications for monitoring training status. Sports Med 38(8): 633–46PubMedCrossRefGoogle Scholar
  10. Bourgois J, Vrijens J (1998) The Conconi test: a controversial concept for the determination of the anaerobic threshold in young rowers. Int J Sports Med 19(8): 553–9PubMedCrossRefGoogle Scholar
  11. Brooke JD, Hamley EJ (1972) The heart-rate – physical work curve analysis for the prediction of exhausting work ability. Med Sci Sports Exerc 4(1): 23–26Google Scholar
  12. Brugada J, Brugada R, Brugada P (1998) Right bundle-branch block and ST-segment elevation in leads V1 through V3. A marker for sudden death in patients without demonstrable structural heart disease. Circulation 97: 457–460PubMedCrossRefGoogle Scholar
  13. Buch NA, Coote JH, Townend JN (2002) Mortality, cardiac vagal control and physical training – what′s the link? Exp Physiol 87(4): 423–435PubMedCrossRefGoogle Scholar
  14. Buchheit M (2014) Monitoring training status with HR measures: do all roads lead to Rome? Front Physiol 5: 73PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cabo JV, Martinez-Camblor P, Del Valle M (2011) Validity of the modified conconi test for determining ventilatory threshold during on-water rowing. J Sports Sci Med 10(4): 616–23PubMedPubMedCentralGoogle Scholar
  16. Carrasco S, Gonzalez R, Gaitan HI, Yanez O (2003) Reproducibility of heart rate variability from short-term recordings during five maneuvers in normal subjects. Med Eng Technol 27(6): 241–248CrossRefGoogle Scholar
  17. Caso P, D’Andrea A, Galderisi M, Liccardo B, Severino S, De Simone L, Izzo A, D’Andrea L, Mininni N (2000) Pulsed Doppler tissue imaging in endurance athletes: relation between left ventricular preload and myocardial regional diastolic function. Am J Cardiol 85: 1131–1136PubMedCrossRefGoogle Scholar
  18. Cellini M, Vitiello P, Nagliati A, Ziglio PG, Martinelli S, Ballarin E, Conconi F (1986) Noninvasive determination of the anaerobic threshold in swimming. Int J Sports Med 7(6): 347–51PubMedCrossRefGoogle Scholar
  19. Chapman JH (1982) Profound sinus bradycardia in the athletic heart syndrome. J Sports Med Phys Fitness 22: 45–48PubMedGoogle Scholar
  20. Conconi F, Ferrari M, Ziglo PG, Droghetti P and Codeca I (1982) Determination of the anaerobic threshold by a noninvasive field test in runners. J Appl Physiol 52(4): 869–873PubMedGoogle Scholar
  21. Conconi F, Grazzi G, Casoni I, Guglielmini C, Brosetto C, Ballarin E, Mazzoni G, Patracini M, Manfredi F (1996) The Conconi Test: methodology after 12 years of application. Int J Sports Med 17: 509–519PubMedCrossRefGoogle Scholar
  22. Corrado D, Basso C, Buja G, Nava A, Rossi L, Thiene G (2001) Right Bundle Branch Block, right precordial ST-segment elevation, and sudden death in young people. Circulation 103: 710–717PubMedCrossRefGoogle Scholar
  23. D’Andrea A, Limongelli G, Caso P, Sarubbi B, Delia Pietra A, Brancaccio P, Cice G, Scherillo M, Limongelli F, Calabrò R (2002) Association between left ventricular structure and cardiac performance during effort in two morphological forms of athlete′s heart. Int J Cardiol 86: 177–184PubMedCrossRefGoogle Scholar
  24. Di Bello V, Pedrinelli R, Giorgi D, Bertini A, Talarico L, Caputo MT, Massimiliano B, Dell′Omo G, Paterni M, Giusti C (1997) Ultrasonic videodensitometric analysis of two different models of left ventricular hypertrophy. Athlete’s heart and hypertension. Hypertension 29: 937–944PubMedCrossRefGoogle Scholar
  25. Dickhuth HH, Nause A, Staiger J, Bonzel T, Keul J (1983) Two-dimensional echocardiographic measurements of left ventricular volume and stroke volume of endurance-trained athletes and untrained subjects. Int J Sports Med 4: 21–26PubMedCrossRefGoogle Scholar
  26. Dickhuth HH, Hipp A, Niess A, Rocker K, Mayer F, Horstmann T (2001) Differentialdiagnostik der physiologischen Herzhypertrophie (Sportherz). Dtsch Z Sportmedizin 52: 205–210Google Scholar
  27. Dickerman RD, Schaller F, McConathy WJ (1998) Left ventricular wall thickening does occur in elite power athletes with or witout anabolic steroid use. Cardiology 90: 145–148PubMedCrossRefGoogle Scholar
  28. Droghetti P, Borsetto C, Casoni I, Cellini M, Ferrari M, Paolini AR, Ziglio PG, Conconi F (1985) Noninvasive determination of the anaerobic threshold in canoeing, cross-country skiing, cycling, roller, and ice-skating, rowing, and walking. Eur J Appl Physiol Occup Physiol 53(4): 299–303PubMedCrossRefGoogle Scholar
  29. Erdogan A, Cetin C, Karatosun H, Baydar ML (2010) Non-invasive indices for the estimation of the anaerobic threshold of oarsmen. J Int Med Res 38(3): 901–15PubMedCrossRefGoogle Scholar
  30. Fagard RH (1996) Athlete’s heart: a metaanalysis of the echocardiographic experience. Int J Sports Med Sci 17: 140–144CrossRefGoogle Scholar
  31. Fisman EZ, Embon P, Pines A, Tenenbaum A, Drory Y, Shapira I, Motro M (1997) Comparison of left ventricular function using isometric exercise doppler echocardiography in competitive runners and weightlifters versus sedentary individuals. Am J Cardiol 79: 355–359PubMedCrossRefGoogle Scholar
  32. Gaisl G, Hofmann P (1989) Allgemeine Richtlinien zur Durchführung des CONCONI-Tests. Spektrum der Sportwissenschaften 1: 101–109Google Scholar
  33. Gaisl G, Hofmann P (1991) Heart rate threshold – Standardization of the modified CONCONI-test for sedentary persons. In: Bachl N et al. (eds) Advances in Ergometry. Springer, Berlin Heidelberg, pp 233–238CrossRefGoogle Scholar
  34. Gaisl G, Hofmann P, Bunc V (1991) Standardization of a noninvaisve method of determining the anaerobic threshold in children. In: Frenkl E et al. (eds) Children and Exercise, Pediatric Work Physiology XV. National Institute for Health Promotion (NEVI) Budapest, pp 234–241Google Scholar
  35. Ganau A, Devereux RB, Roman MJ, de Simone G, Pickering TG, Saba PS et al. (1992) Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Carddiol 19(7): 1550–1558CrossRefGoogle Scholar
  36. Giada F, Bersaglia E, De Piccoli B, Franceschi M, Sartori F, Raviere A. Pancotto P (1998) Cardiovascular adaptations to endurance training and detraining in young and older athletes. Int J Cardiol 65: 149–155PubMedCrossRefGoogle Scholar
  37. Grubb BP, Karas B (1999) Clinical disorders of the autonomic nervous system associated with orthostatic intolerance: an overview of classification, clinical evaluation, and management. PACE 22: 798–810PubMedCrossRefGoogle Scholar
  38. Grubb BP, Kanjwal MY, Kosinski DJ (2001) Review: the postural orthostatic tachycardia syndrome: current concepts in pathophysiology diagnosis and management. J Intervent Cardiac Electrophysiol 5: 9–16CrossRefGoogle Scholar
  39. Hansen D, Stevens A, Eijnde BO, Dendale P (2012) Endurance exercise intensity determination in the rehabilitation of coronary artery disease patients: a critical re-appraisal of current evidence. Sports Med 42(1): 11–30PubMedCrossRefGoogle Scholar
  40. Hedelin R, Kentta G, Wiklund U, Bjerle P, Henriksson-Larsen K (2000) Short-term overtraining: effects on performance, circulatory responses, and heart rate variability. Med Sci Sports Exerc 3: 2(8): 1480–1484CrossRefGoogle Scholar
  41. Henry WL, Gardin JM, Ware JH (1980) Echocardiographic measurements in normal subjects from infancy to old age. Circulation 62(5): 1054–1061PubMedCrossRefGoogle Scholar
  42. Hörtnagl H (1982) Echokardiographie in der Sportmedizin. II. Neue Aspekte. Österr J Sportmed 12/3: 3–13Google Scholar
  43. Hörtnagl H, Raas E (1982) Digitized echocardiograms of the athletic heart and other forms of left ventricular hypertrophy. Int J Sports Med 3 [Suppl] (abstract service World Congress on Sports Medicine, Vienna): 38–39Google Scholar
  44. Hörtnagl H, Raas E (1984) Beginnt die Herzinsuffizienz in der Diastole? In: Herzinsuffizienz. Pathopysiologie, Klinik und Therapie. In: Keul J, Dickhuth HH (Hrsg) Perimed Fachbuch Verlag, Erlangen, S 190–198Google Scholar
  45. Hörtnagl H, Semenitz B, Baumgartner H, Raas E (1985) Instantane Analyse von M-Mode Echokardiogrammen: Verbesserung der diastolischen Linksventrikelfunktion von Grenzwerthypertonikern nach Training? Z Kardiol 74 [Suppl] 5: 37Google Scholar
  46. Hörtnagl H, Semenitz B, Baumgartner H, Raas E (1988) Improvement of diastolic left ventricular function (complexe analysis from M-mode echocardiograms) in borderline hypertensives after endurance training. Int J Sports Med 9: 377Google Scholar
  47. Hofmann P (1997) Die Herzfrequenz-Leistungs-Kurve. Habilitationsschrift, KF-Universität Graz, GrazGoogle Scholar
  48. Hofmann P, Leitner H, Gaisl G, Neuhold C (1988) Computergestützte Auswertung des modifizierten Conconi-Tests am Fahrradergometer. Leistungssport 3: 26–27Google Scholar
  49. Hofmann P, Gaisl G (1990) Entwicklung von Modifikationen des CONCONI-Tests. In: Amesberger G et al. (Hrsg) Sportwissenschaften im Lichte moderner Forschung. Österr Sportwissenschaftliche Gesellschaft Wien, 227–233Google Scholar
  50. Hofmann P, Pokan R (2010) Value of the application of the heart rate performance curve in sports. Int J Sports Physiol Perform 5(4): 437–47PubMedCrossRefGoogle Scholar
  51. Hofmann P, Bunc V, Leitner H, Pokan R, Gaisl G (1994a) Heart rate threshold related to lactate turn point and steady state exercise on cycle ergometer. Eur J Appl Physiol 69(2): 132–139CrossRefGoogle Scholar
  52. Hofmann P, Pokan R, Preidler K, Leitner H, Szolar D, Eber B, Schwaberger G (1994b) Relationship between heart rate threshold, lactate turn point and myocardial function. Int J Sports Med 15: 232–237PubMedCrossRefGoogle Scholar
  53. Hofmann P, Peinhaupt G, Leitner H, Pokan R (1995) Evaluation of Heart Rate Threshold by means of Lactate Steady State and Endurance Tests in White Water Kayakers. In: Viitasalo JT, Kujala U (eds) The Way To Win. Proceedings of the International Congress on Applied Research in Sports held in Helsinki, Finland, on 9–11 August 1994, The Finnish Society for Research in Sport and Physical Education, Helsinki, 217–220Google Scholar
  54. Hofmann P, Pokan R (1996) Neue Erkenntnisse zur Herzfrequenz-Leistungs-Kurve. In: Müller E, Schwameder H (Hrsg) Aspekte der Sportwissenschaft. Österr Sportwissenschaftliche Gesellschaft, S 121–131Google Scholar
  55. Hofmann P, Pokan R, Beaufort F, Schumacher M, Fruhwald FM, Zweiker R, Eber B, Gasser R, Schmid P, Brandt D, Klein W (1996) Left ventricular function during incremental cycle ergometer exercise related to aerobic and anaerobic threshold in patients after myocardial infarction, healthy older subjects and young sports students. In: Chytrackova J, Kohoutek M (eds) Sport Kinetics 95, Prague, p 192–198.Google Scholar
  56. Hofmann P, Pokan R, Von Duvillard SP, Seibert FJ, Zweiker R, Schmid P (1997) Heart rate performance curve during incremental cycle ergometer exercise in healthy young male subjects. Med Sci Sports Exerc 29(6): 762–768PubMedCrossRefGoogle Scholar
  57. Hofmann P, Seibert FJ, Öhlknecht A, Sudi KM, Pokan R, Schmid P (1997) Relationship between lactate turn points and potassium and sodium response during incremental cycle ergometer exercise. The Second Annual Congress of the European College of Sport Science Copenhagen, Denmark 20–23. August 1997: 976–977Google Scholar
  58. Hofmann P, Pokan R, von Duvillard SP, Schmid P (1997) The Conconi test. Int J Sports Med 18(5): 397–9PubMedCrossRefGoogle Scholar
  59. Hofmann P, Seibert FJ, Öhlknecht A, Sudi KM, Pokan R, Schmid P (1998) Relationship between blood potassium level and the deflection of the heart rate performance curve. Int J Sports Med 19: 25Google Scholar
  60. Hofmann P, Seibert FJ, Pokan R, Golda M, Wallner D, von Duvillard SP (1999) Relationship between blood pH, potassium and the heart rate performance curve. Med Sci Sports Exerc 31(5): 150CrossRefGoogle Scholar
  61. Hofmann P, Pokan, R, Von Duvillard SP (2000) Heart rate performance curve and heart rate turn point. Acta Universitatis Tartuensis 5: 23–43Google Scholar
  62. Hofmann P, von Duvillard SP, Seibert FJ, Pokan R, Wonisch M, LeMura LM, Schwaberger G (2001)%HRmax target heart rate is dependent on heart rate performance curve deflection. Med Sci Sports Exerc 33(10): 1726–1731PubMedCrossRefGoogle Scholar
  63. Hofmann P, Wonisch M, Pokan R, Schwaberger G, Smekal G, von Duvillard SP (2005) Beta1-adrenoceptor mediated origin of the heart rate performance curve deflection. Med Sci Sports Exerc 37(10): 1704–9PubMedCrossRefGoogle Scholar
  64. Hofmann P, Jürimäe T, Jürimäe J, Purge P, Maestu J, Wonisch M, Pokan R, von Duvillard SP (2007) HRTP, prolonged ergometer exercise, and single sculling. Int J Sports Med 28(11): 964–9PubMedCrossRefGoogle Scholar
  65. Hottenrott K (Hrsg) (2002) Herzfrequenzvaraibilität im Sport. Prävention – Rehabilitation – Training. Schriften der Deutschen Vereinigung für Sportwissenschaft, Bd 129Google Scholar
  66. Howorka K, Pumprla J, Haber P, Koller-Strametz J, Mondrzyk J, Schabmann A (1997) Effects of Physical training on heart rate variability in diabetic patients with various degrees of cardiovascular autonomic neuropathy. Cardiovascular Res 34: 206–214CrossRefGoogle Scholar
  67. Huikuri HV, Mäkikallio T, Airaksinen KEJ, Mitrani R, Castellanos A, Myerburg RJ (1999) Measurement of heart rate variability: a clinical tool or a research toy? JACC 34(7): 1878–1883PubMedCrossRefGoogle Scholar
  68. Huston TP, Puffer JC, Rodny WM (1985) The athletic heart syndrome. New Engl J Med 313: 24–32PubMedCrossRefGoogle Scholar
  69. James DVB, Barnes AJ, Lopes P, Wood DM (2002) Heart rate variability: response following a single bout of interval training. Int J Sports Med 23: 247–251PubMedCrossRefGoogle Scholar
  70. Jeukendrup AE, Hesselink MK, Kuipers H, Keizer HA (1997) The Conconi test. Int J Sports Med 18(5): 393–6PubMedCrossRefGoogle Scholar
  71. Jones AM, Doust JH (1997) The Conconi test in not valid for estimation of the lactate turnpoint in runners. J Sports Sci 15(4): 385–94PubMedCrossRefGoogle Scholar
  72. Katz AM (2010) Physiology of the Heart, 5th ed. Wolters Kluwer & Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  73. Kirch E (1935) Anatomische Grundlagen des Sportherzens. Verh Dtsch Ges Inn Med 47: 73Google Scholar
  74. Kochiadakis GE, Kanoupakis,EM, Igoumenidis NE, Merketou ME, Solomou MC, Vardas PE (1998) Spectral analysis of heart rate variability during tilt-table testing in patients with vasovagal syncope. Int J Cardiol 64: 185–194PubMedCrossRefGoogle Scholar
  75. Kristal-Boneh E, Raifel M, Froom P, Ribak J (1995) Heart rate variability in health and disease. Scand J Work Environ Health 21: 85–95PubMedCrossRefGoogle Scholar
  76. Laube W, Martin J, Tank J, Baevski RM, Schubert E (1996) Heart rate variability – an indicator of the muscle fatigue after physical exercise. Perfusion 9(5): 225–229Google Scholar
  77. La Gerche A, Burns AT, Mooney DJ, Inder WJ, Taylor AJ, Bogaert J, Macisaac AI, Heidbüchel H, Prior DL (2012) Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J 33(8): 995–1006CrossRefGoogle Scholar
  78. Leitner H, Hofmann P, Gaisl G (1988) A method for the microcomputer aided determination of the anaerobic threshold by means of heart rate curve analysis. Conf. Proceedings 15 years: Biomedical Engineering in Austria, Graz, June 1988, pp 136–141Google Scholar
  79. Leitner H, Hofmann P, Leitner K (1992) Software zur Auswertung von Herzfrequenz und Laktatwerten in der Leistungsdiagnostik. Österr J Sportmed 22(4): 115–118Google Scholar
  80. Malfatto G, Facchini M, Bragato R, Branzi G, Sala L, Leonetti G (1996) Short and long term effects of exercise training on the tonic autonomic modulation of heart rate variability after myocardial infarction. Eur Heart J 17: 532–538PubMedCrossRefGoogle Scholar
  81. Malfatto G, Branzi G, Riva B, Sala L, Leonetti G, Facchini M (2002) Recovery of cardiac autonomic responsiveness with low-intensity physical training in patients with chronic heart failure. EurJ Heart Failure 4: 159–166CrossRefGoogle Scholar
  82. Mann T, Lamberts RP, Lambert MI (2013) Methods of prescribing relative exercise intensity: physiological and practical considerations. Sports Med 43(7): 613–25PubMedCrossRefGoogle Scholar
  83. Migliaro ER, Contreras P (2003) Heart rate variability: short-term studies are as useful as holter to differentiate diabetic patients from healthy subjects. Ann Noninvasive Electrocardiol 3(4): 313–320CrossRefGoogle Scholar
  84. Mistry JD, Kramer CM (2003) Imaging of cardiopulmonary diseases. Clin Sports Med 22: 197–212PubMedCrossRefGoogle Scholar
  85. Moser M, Lehhofer M, Sedminek A, Lux M, Zapotoczky HG, Kenner T, Noordergraaf A (1994) Heart rate variability as a prognostic tool in cardiology. A contribution to the problem from a theoretical point of view. Circulation 90(2): 1078–1082PubMedCrossRefGoogle Scholar
  86. Neumayer M (2005) Zusammenhang zwischen Sauerstoffaufnahme und Wattleistung am Fahrradergometer bei weiblichen und männlichen Sportstudenten. Institut für SportwissenschaftenGoogle Scholar
  87. Opie LM (2004) Heart Physiology: From Cell to Circulation, 4th ed. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  88. Oxborough D, Birch K, Shave R, George K (2010) Exercise-induced cardiac fatigue: a review of the echocardiographic literature. Echocardiography 27(9): 1130–1140PubMedCrossRefGoogle Scholar
  89. Parisi AF, Beckmann CH, Lancaster MC (1971) The spectrum of ST segment elevation in the electrocardiograms of healthy adult men. J Electrocardiol 4: 137–144PubMedCrossRefGoogle Scholar
  90. Pellicia A, Maron JB, Spataro A, Proschan MA, Spirito P (1991) The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Engl J Med 324: 295–301CrossRefGoogle Scholar
  91. Pellicia A, Maron JB, Culasso F, Spataro A, Caselli G (1996) Athletes heart in women echocardiographic characterization of highly trained elite female athletes. JAMA 276: 211–215CrossRefGoogle Scholar
  92. Pellicia A, Culasso F, Di Paolo FM, Maron JB (1999) Physiologic left ventricular cavity dilatation in elite athletes. Ann Intern Meg 130: 23–31CrossRefGoogle Scholar
  93. Pellicia A, Maron BJ, Culasso F, Di Paolo FM, Spataro A, Biffi A, Caselli G, Piovano P (2000) Clinical significance of abnormal electrocardiographic patterns in trained athletes. Circulation 18(102): 278–84CrossRefGoogle Scholar
  94. Pellicia A, Di Paolo FM, Maron BJ (2002) The athlete′s heart: remodeling, electrocardiogram and oreparticipation screening. Cardiol Rev 10: 85–90CrossRefGoogle Scholar
  95. Pichot V, Busso T, Roche F, Garet M, Costes F, Duverney D, Lacour JR, Barthelemy JC (2002) Autonomic adaptations to intensive and overload training periods: a laboratory study. Med Sei Sports exerc 34(10): 1660–1666CrossRefGoogle Scholar
  96. Pokan R, Hofmann P (2000) Heart rate turn point and heart rate performance curve – current knowledge. The Tokai Sports Med Sci 12: 9–18Google Scholar
  97. Pokan R, Schmid P (2003) Die Arterielle Hypertonie aus Sicht der Sportmedizin. In: Eber B (Hrsg) Die arterielle Hypertonie aus interdisziplinärer Sicht. Hans Marseille Verlag GmbH, München, S 199–204Google Scholar
  98. Pokan R, Dickhuth HH, Dürr H, Huonker M, Keul J (1991) Kardiale Anpassung (Echokardiographie) und Leistungsbreite bei Leistungssportlerinnen unterschiedlicher Trainingsanamnese und untrainierten Frauen. Deut Z Sportmed 42(7): 309–315Google Scholar
  99. Pokan R, Hofmann P, Preidler K, Leitner H, Dusleag J, Eber B, Schwaberger G, Füger GF, Klein W (1993) Correlation between inflection of heart rate/work performance curve and myocardial function in exhaustive cycle ergometry. Eur J Appl Physiol 67: 385–388CrossRefGoogle Scholar
  100. Pokan R, Hofmann P, Lehmann M, Leitner H, Eber B, Gasser R, Schwaberger G, Schmid P, Keul J, Klein W (1995) Heart rate deflection related to lactate performance curve and plasma catecholamine response during incremental cycle ergometer exercise. Eur J Appl Physiol Occup Physiol 70(2): 175–9PubMedCrossRefGoogle Scholar
  101. Pokan R, Hofmann P, von Duvillard SP, Beaufort F, Schumacher M, Fruhwald FM, Zweiker R, Eber B, Gasser R, Brandt D, Smekal G, Klein W, Schmid P (1997) Left ventricular function in response to the transition from aerobic to anaerobic metabolism. Med Sci Sports Exerc 29(8): 1040–1047PubMedCrossRefGoogle Scholar
  102. Pokan R, Enne R, Hofmann P, Smekal G, von Duvillard SP, Leitner H, Bachl N, Schmid P (1998a) Performance diagnostics in aging women and men. Int J Sports Med 19: 28Google Scholar
  103. Pokan R, Hofmann P, von Duvillard SP, Beaufort F, Smekal G, Gasser R, Eber B, Bachl N, Schmid P (1998b) The heart rate performance curve and left ventricular function during exercise in patients after myocardial infarction. Med Sci Sports Exerc 30(10): 1475–1480PubMedCrossRefGoogle Scholar
  104. Pokan R, Hofmann P, Von Duvillard SP, Schumacher M, Gasser R, Zweiker R, Fruhwald FM, Eber B, Smekal G, Bachl N, Schmid P (1998c) Parasympathetic receptor blockade and the heart rate performance curve. Med Sci Sports Exerc. 30(2): 229–33PubMedCrossRefGoogle Scholar
  105. Pokan R, Hofmann P, von Duvillard SP, Smekal G, Högler R, Tschan H, Baron R, Schmid P, Bachl N (1999) The heart rate turn point, reliability and methodological aspects. Med Sci Sports Exerc 31(6): 903–907PubMedCrossRefGoogle Scholar
  106. Pokan R, Ocenasek H, Hochgatterer R, Miehl M, Vonbank K, von Duvillard SP, Franklin B, Würth S, Volf I, Wonisch M, Hofmann P (2014) Myocardial Dimensions and Hemodynamics during 24-h Ultra-endurance Ergometry. Med Sci Sports Exerc 46(2): 268–275PubMedCrossRefGoogle Scholar
  107. Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE (2000) The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation 100: 336–344CrossRefGoogle Scholar
  108. Polar (1995) Polar precision performance software. User’s Manual. Polar Electro Professorintie 5 90440 Kempele, FinlandGoogle Scholar
  109. Ribeiro JP, Fielding RA, Hughes V, Black A, Bochese MA, Knuttgen HG (1985) Heart rate break point may coincide with the anaerobic and not the aerobic threshold. Int J Sports Med 6(4): 220–4PubMedCrossRefGoogle Scholar
  110. Roskamm H, Reindell H, Müller M (1966) Herzgröße und ergometrisch getestete Ausdauerleistungsfähigkeit bei Hochleistungssportlern aus 9 deutschen Nationalmannschaften. Z Kreislauff 55: 2–11Google Scholar
  111. Rost R (1984) Herz und Sport. Beiträge zur Sportmedizin, Bd 22. Perimed, Erlangen, S 47Google Scholar
  112. Schannwell CM, Schneppenheim M, Plehn G, Marx R, Strauer BE (2002) Left ventricular diastolic function in physiologic and pathologic hypertrophy. Am J Hypertens 15: 513–517PubMedCrossRefGoogle Scholar
  113. Sentija D, Vucetic V, Markovic G (2007) Validity of the modified Conconi running test. Int J Sports Med 28(12): 1006–11PubMedCrossRefGoogle Scholar
  114. Serra-Grima R, Estorch M, Carrio I, Subirana M, Berna L, Prat T(2000) Marked ventricular repolarization abnormalities in highly trained athletes’ electrocardiograms: clinical and prognostic implications. J Am Coll Cardiol 36: 1310–1316PubMedCrossRefGoogle Scholar
  115. Sheehan GA, Bank R (1973) Electrocardiography in athletes. JAMA 224: 196CrossRefGoogle Scholar
  116. Stauss H M (2003) Heart rate variability. Am J Physiol Regul Inter Comp Physiol 285(5): R927–931CrossRefGoogle Scholar
  117. Stein R, Medeiros CM, Rosito GA, Zimerman LI, Ribeiro JP (2002) Intrinsic sinus and atrioventricular node electrophysiologic adaptations in endurance athletes. J Am Coll Cardiol 20: 1033–1038CrossRefGoogle Scholar
  118. Task Force of the European Society of Cardiology and the North American Society of pacing and Electrophysiology (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation 93(5): 1043–1065CrossRefGoogle Scholar
  119. Urhausen A, Kindermann W (1999) Sports-specific adaptations and differentiation of the athlete’s heart. Sports Med 28(4): 237–244PubMedCrossRefGoogle Scholar
  120. Uusitalo ALT, Uusitalo AJ, Rusko H (2000) Heart rate and blood pressure variability during heavy training and overtraining in the female athlete. Int J Sports Med 21: 45–53PubMedCrossRefGoogle Scholar
  121. Venerando A (1979) Electrocardiography in sports medicine. J Sports Med Phys Fitness 19(2): 107–128PubMedGoogle Scholar
  122. Wasserman K, Hansen JE, Sue DY, Stringer, WW, Whipp BJ (2005) Principles of Exercise Testing and Interpretation. Including Pathophysiology and Clinical Applications, 4th ed. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  123. Williams RS, Eden RS, Moll ME, Lester RM, Wallace AG (1981) Autonomic mechanisms of training bradycardia: (3-)adrenergic receptors in humans. J Appl Physiol 51: 1232–1237PubMedGoogle Scholar
  124. Winchell RJ, Hoyt DB (1997) Analysis of heart-rate variability: a noninvasive predictor of death and poor outcome in patients with severe head injury. The J Trauma Injury Infection Critical Care 43(6): 927–933CrossRefGoogle Scholar
  125. Wonisch M, Hofmann P, Fruhwald FM, Hoedl R, Schwaberger G, Pokan R, von Duvillard SP, Klein W (2002) Effect of beta(1)-selective adrenergic blockade on maximal blood lactate steady state in healthy men. Eur J Appl Physiol 87(1): 66–71PubMedCrossRefGoogle Scholar
  126. Wonisch M, Hofmann P, Fruhwald FM, Kraxner W, Hödl R, Pokan R, Klein W (2003) Influence of beta-blocker use on percentage of target heart rate exercise prescription. Eur J Cariovascular Prevention Rehab 10(4): 296–301CrossRefGoogle Scholar
  127. Wonisch M, Berent R, Klicpera M, Laimer H, Marko C, Pokan R, Schmid P, Schwann H (2008) Praxisleitlinien Ergometrie. J Kardiol 15 (Suppl A): 2–17Google Scholar

Weiterführende Literatur

  1. Aubert H, Seps B, Beckers F (2003) Heart rate variability in athletes. Sports Med 33(12): 889–919PubMedCrossRefGoogle Scholar
  2. Hottenrott K (Hrsg) (2002) Herzfrequenzvariabilität im Sport. Prävention – Rehabilitation – Training. Schriften der Deutschen Vereinigung für Sportwissenschaft, Bd 129. Czwalina Verlag, HamburgGoogle Scholar
  3. Kindermann W, Dickhuth HH, Nieß A, Röcker K, Urhausen A (2003) Sportkardiologie. Körperliche Aktivität bei Herzerkrankungen. Steinkopff Verlag, DarmstadGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Rochus Pokan
    • 1
  • Peter Hofmann
    • 2
  • Manfred Wonisch
    • 3
  • Helmut Hörtnagl
    • 4
  1. 1.Institut für SportwissenschaftWienÖsterreich
  2. 2.Institute of Sports Science Exercise Physiology, Training & Training Therapy Research GroupUniversity of GrazGrazÖsterreich
  3. 3.Facharzt für Innere Medizin und Kardiologie,Sportwissenschafter FranziskusspitalWienÖsterreich
  4. 4.Institut für Sport- und KreislaufmedizinInnsbruckÖsterreich

Personalised recommendations