Bacterial adaptation to hot and dry deserts

  • Thierry Heulin
  • Gilles De Luca
  • Mohamed Barakat
  • Arjan de Groot
  • Laurence Blanchard
  • Philippe Ortet
  • Wafa Achouak


Prokaryotic microorganisms are known to be highly adaptable to diverse environmental conditions and to thrive in harsh environments. Halophilic microorganisms (Bacteria and Archaea) tolerate and grow in the presence of salt concentrations 10 times higher than seawater, whereas acidophiles withstand a pH of 1, and hyperthermophiles face temperatures above 85°C. Bacteria are able to sense changing environmental parameters such as temperature, pressure, pH, ionic strength, solute concentrations and water availability, and to adapt by protecting biological molecules and adjusting biochemical reactions in response to extreme conditions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almeida WI, Vieria RP, Machado Cardoso A, Silveira CB, Costa RG, Gonzalez AM, Paranhos R, Medeiros JA, Freitas FA, Albano RM, Martins OB (2009) Archaeal and bacterial communities of heavy metal contaminated acidic waters from zinc mine residues in Sepetiba Bay. Extremophiles 13:263–271PubMedCrossRefGoogle Scholar
  2. Barer MR (2003) Physiological and molecular aspects of growth, non-growth, culturability and viability in bacteria. In: Anthony R.M. Coates (ed) Dormancy and low-growth states in microbial disease. Cambridge University Press, Cambridge, pp 1–35CrossRefGoogle Scholar
  3. Barrat JA, Gillet P, Lécuyer C, Sheppard SM, Lesourd M (1998) Formation of carbonates in the Tatahouine meteorite. Science 280:412–414PubMedCrossRefGoogle Scholar
  4. Barrat JA, Gillet P, Lesourd M, Blichert-Toft J, Poupeau GR (1999) The Tatahouine diogenite: mineralogical and chemical effects of sixty-three years of terrestrial residence. Meteor Planet Sci 34:91–97CrossRefGoogle Scholar
  5. Battista JR, Park MJ, McLemore AE (2001) Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 43:133–139PubMedCrossRefGoogle Scholar
  6. Bentchikou E, Servant P, Coste G, Sommer S (2010) A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in Deinococcus radiodurans. PLoS Genet 6:e1000774PubMedCrossRefGoogle Scholar
  7. Benzerara K, Barakat M, Menguy N, Guyot F, De Luca G, Audrain C, Heulin T (2004a) Experimental colonization and alteration of orthopyroxene by the pleomorphic bacteria Ramlibacter tataouinensis. Geomicrobiol J 21:341–349CrossRefGoogle Scholar
  8. Benzerara K, Menguy N, Guyot F, Skouri F, De Luca G, Barakat M, Heulin T (2004b) Biologically controlled precipitation of calcium phosphate by Ramlibacter tataouinensis. Earth Planet Sci Lett 228:439–449CrossRefGoogle Scholar
  9. Benzerara K, Chapon V, Moreira D, Lopez-Garcia P, Guyot F, Heulin T (2006) Microbial diversity on the Tatahouine meteorite. Meteor Planet Sci 41:1249–1265CrossRefGoogle Scholar
  10. Berleman JE, Bauer CE (2004) Characterization of cyst cell formation in the purple photosynthetic bacterium Rhodospririllum centenum. Microbiology-SGM 150:383–390CrossRefGoogle Scholar
  11. Billi D, Potts M (2002) Life and death of dried prokaryotes. Res Microbiol 153:7–12PubMedCrossRefGoogle Scholar
  12. Blasius M, Sommer S, Hübscher U (2008) Deinococcus radiodurans: what belongs to the survival kit? Crit Rev Biochem Mol Biol 43:221–238PubMedCrossRefGoogle Scholar
  13. Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525PubMedCrossRefGoogle Scholar
  14. Connon SA, Tovanabootr A, Dolan M, Vergin K, Giovannoni SJ, Semprini L (2005) Bacterial community composition determined by culture-independent and-dependent methods during propane-stimulated bioremediation in trichlorethene-contaminated groundwater. Environ Microbiol 7:165–178PubMedCrossRefGoogle Scholar
  15. Cox MM, Battista JR (2005) Deinococcus radiodurans — the consummate survivor. Nat Rev Microbiol 3:882–892PubMedCrossRefGoogle Scholar
  16. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SM, Kemner KM, Fredrickson JK (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:e92CrossRefGoogle Scholar
  17. Dulermo R, Fochesato S, Blanchard L, de Groot A (2009) Mutagenic lesion bypass and two functionally different RecA proteins in Deinococcus deserti. Mol Microbiol 74:194–208PubMedCrossRefGoogle Scholar
  18. Essendoubi M, Brhada F, Eljamali JE, Filali-Maltouf A, Bonnassie S, Georgeault S, Blanco C, Jebbar M (2007) Osmoadaptative responses in the rhizobia nodulating Acacia isolated from south-eastern Moroccan Sahara. Environ Microbiol 9:603–611PubMedCrossRefGoogle Scholar
  19. Fredrickson JK, Li SM, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403PubMedCrossRefGoogle Scholar
  20. Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 32:774–782CrossRefGoogle Scholar
  21. Garcia-Pichel F, Pringault O (2001) Cyanobacteria track water in desert soils. Nature 143:380–381CrossRefGoogle Scholar
  22. Garcia-Pichel F, López-Cortés A, Nübel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado plateau. Appl Environ Microbiol 67:1902–1910PubMedCrossRefGoogle Scholar
  23. Gillet P, Barrat JA, Heulin T, Achouak W, Lesourd M, Guyot F, Benzerara K (2000) Bacteria in the Tatahouine meteorite: nanometric-scale life in rocks. Earth Planet Sci Lett 175:161–167PubMedCrossRefGoogle Scholar
  24. Gommeaux M, Barakat M, Lesourd M, Thiéry J, Heulin T (2005) A morphological transition in the pleiomorphic bacterium Ramlibacter tataouinensis TTB310. Res Microbiol 156:1026–1030PubMedCrossRefGoogle Scholar
  25. Gommeaux M, Barakat M, Montagnac G, Christen R, Guyot F, Heulin T (2010) Mineral and bacterial diversities of desert sand grains from South-East Morocco. Geomicrobiol J 27:76–92CrossRefGoogle Scholar
  26. de Groot A, Chapon V, Servant P, Christen R, Fisher-Le Saux M, Sommer S, Heulin T (2005) Deinococcus deserti sp. nov., a gamma-radiation tolerant bacterium isolated from the Sahara desert. Int J Syst Evol Microbiol 55:2441–2446PubMedCrossRefGoogle Scholar
  27. de Groot A, Dulermo R, Ortet P, Blanchard L, Guérin P, Fernandez B, Vacherie B, Dossat C, Jolivet E, Siguier P, Chandler M, Barakat M, Dedieu A, Barbe V, Heulin T, Sommer S, Achouak W, Armengaud J (2009) Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti. PLoS Genet 5:e1000434.PubMedCrossRefGoogle Scholar
  28. Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52:345–357PubMedCrossRefGoogle Scholar
  29. Heulin T, Barakat M, Christen R, Lesourd M, Sutra L, De Luca G, Achouak W (2003) Ramlibacter tataouinensis gen. nov., and Ramlibacter henchirensis sp. nov., cyst-producing bacteria isolated from sub-desert soil in Tunisia. Int J Syst Evol Microbiol 53:589–594PubMedCrossRefGoogle Scholar
  30. Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol Biochem 40:2843–2853CrossRefGoogle Scholar
  31. Kaci Y, Heyraud A, Barakat M, Heulin T (2005) Isolation and identification of an EPS-producing Rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Res Microbiol 156:522–531PubMedCrossRefGoogle Scholar
  32. Karnieli A, Kidron GJ, Glaesser C, Eyal Ben-Dor E (1999) Spectral characteristics of cyanobacteria soil crust in semiarid environments. Remote Sens Environ 69:67–75CrossRefGoogle Scholar
  33. Khbaya B, Neyra M, Normand P, Zerhari K, Filali-Maltouf A (1998) Genetic diversity and phylogeny of rhizobia that nodulate acacia spp. in morocco assessed by analysis of rRNA genes. Appl Environ Microbiol 64:4912–4917PubMedGoogle Scholar
  34. Kröpelin S, Verschuren D, Lézine AM, Eggermont H, Cocquyt C, Francus O, Cazet JP, Fagot M, Ramus B, Russell JM, Conley DJ, Schuster M, von Suchodoletz H, Engstrom DR (2008) Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320:765–768PubMedCrossRefGoogle Scholar
  35. Lacroix A (1931) Sur la chute récente (27 juin 1931) d’une météorite asidérite dans l’extrme Sud Tunisien. C R Acad Sci Paris 193:305–309Google Scholar
  36. Le Houérou HN (1986) The desert and arid zones of Northern Africa. In: Evenari M, Noy-Meir E, Goodall DW (eds) Hot deserts and arid shrublands. Ecosystems of the world, vol 12B. Elsevier, Amsterdam, pp 101–147Google Scholar
  37. Le Houérou HN (1997) Climate, flora and fauna changes in the Sahara over the past 500 million years. J Arid Environ 37:619–647CrossRefGoogle Scholar
  38. Levin-Zaidman S, Englander J, Shimoni E, Sharma AK, Minton KW, Minsky A (2003) Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 299:254–256PubMedCrossRefGoogle Scholar
  39. Long LK, Zhu HH, Yao Q, Ai YC (2008) Analysis of bacterial communities associated with spores of Gigaspora margarita and Gigaspora rosea. Plant Soil 310:1–9CrossRefGoogle Scholar
  40. Makarova KS, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Lapidus A, Copeland A, Kim E, Land M, Mavrommatis K, Pitluck S, Richardson PM, Detter C, Brettin T, Saunders E, Lai B, Ravel B, Kemner KM, Wolf YI, Sorokin A, Gerasimova AV, Gelfand MS, Fredrickson JK, Koonin EV, Daly MJ (2007) Deinococcus geothermalis: the pool of extreme radiation genes shrinks. PLoS One 2:e995CrossRefGoogle Scholar
  41. Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637PubMedGoogle Scholar
  42. Mobley HL, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59:451–480PubMedGoogle Scholar
  43. Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Lett 58:755–805Google Scholar
  44. Prestel E, Salamitou S, DuBow MS (2008) An examination of the bacteriophages and bacteria of the Namib desert. J Microbiol 46:364–372PubMedCrossRefGoogle Scholar
  45. Rainey FA, Rau K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park MJ, Earl AM, Shank NC, Small AM, Henk MC, Battista JR, Kämpfer P, da Costa MS (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl EnvironMicrobiol 71:5225–5235CrossRefGoogle Scholar
  46. Rutz BA, Kieft TL (2004) Phylogenetic characterization of dwarf archaea and bacteria from a semiarid soil. Soil Biol Biochem 36:825–833CrossRefGoogle Scholar
  47. Sadoff HL (1975) Encystment and germination in Azotobacter vinelandii. Bacteriol Rev 39:516–539PubMedGoogle Scholar
  48. Schuster M, Duringer P, Ghienne JF, Vignaud P, Taisso-Mackaye H, Likius A, Brunet M (2006) The age of the Sahara desert. Science 311:821PubMedCrossRefGoogle Scholar
  49. Shrestha PM, Noll M, Liesack W (2007) Phylogenetic identity, growth-response time and rRNA operon copy number of soil bacteria indicate different stages of community succession. Environ Microbiol 9:2464–2474PubMedCrossRefGoogle Scholar
  50. Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 8:211–223CrossRefGoogle Scholar
  51. Tanaka M, Earl AM, Howell HA, Park MJ, Eisen JA, Peterson SN, Battista JR (2004) Analysis of Deinococcus radiodurans’s transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to radioresistance. Genetics 168:21–33PubMedCrossRefGoogle Scholar
  52. Torsvik T, Øvreas L, Thingstad TF (2002) Prokaryotic diversity — magnitude, dynamics, and controlling factors. Science 296:1064–1066PubMedCrossRefGoogle Scholar
  53. White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, Haft DH, Gwinn ML, Nelson WC, Richardson DL, Moffat KS, Qin H, Jiang L, Pamphile W, Crosby M, Shen M, Vamathevan JJ, Lam P, McDonald L, Utterback T, Zalewski C, Makarova KS, Aravind L, Daly MJ, Minton KW, Fleischmann RD, Ketchum KA, Nelson KE, Salzberg S, Smith HO, Venter JC, Fraser CM (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286: 1571–1577PubMedCrossRefGoogle Scholar
  54. Xie S, Sun W, Luo C, Cupples AM (2010) Stable isotope probing identifies novel m-xylene degraders in soil microcosm from contaminated and uncontaminated sites. Water Air Soil Pollut. DOI: 10.1007/s11270-010-0326-zGoogle Scholar
  55. Zahradka K, Slade D, Bailone A, Sommer S, Averbeck D, Petranovic M, Lindner AB, Radman M (2006) Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443:569–573PubMedGoogle Scholar
  56. Zerhari K, Aurag J, Khbaya B, Kharchaf D, Filali-Maltouf A (2000) Phenotypic characteristics of rhizobia isolates nodulating acacia species in the arid and Saharan regions of Morocco. Lett Appl Microbiol 30:351–357PubMedCrossRefGoogle Scholar
  57. Zimmerman JM, Battista JR (2005) A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol 5:17PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  • Thierry Heulin
    • 1
  • Gilles De Luca
    • 1
  • Mohamed Barakat
    • 1
  • Arjan de Groot
    • 1
  • Laurence Blanchard
    • 1
  • Philippe Ortet
    • 1
  • Wafa Achouak
    • 1
  1. 1.Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environment (LEMIRE)UMR 6191 CNRS-CEA-Aix-Marseille Univ., Institute of Environmental Biology and Biotechnology (iBEB)St-Paul-lez-DuranceFrance

Personalised recommendations