Intraoperative Imaging in Neurosurgery: Where Will the Future Take Us?

  • Ferenc A. JoleszEmail author
Part of the Acta Neurochirurgica Supplementum book series (NEUROCHIRURGICA, volume 109)


Intraoperative MRI (ioMRI) dates back to the 1990s and since then has been successfully applied in neurosurgery for three primary reasons with the last one becoming the most significant today: (1) brain shift-corrected navigation, (2) monitoring/controlling thermal ablations, and (3) identifying residual tumor for resection. IoMRI, which today is moving into other applications, including treatment of vasculature and the spine, requires advanced 3T MRI platforms for faster and more flexible image acquisitions, higher image quality, and better spatial and temporal resolution; functional capabilities including fMRI and DTI; non-rigid registration algorithms to register pre- and intraoperative images; non-MRI imaging improvements to continuously monitor brain shift to identify when a new 3D MRI data set is needed intraoperatively; more integration of imaging and MRI-compatible navigational and robot-assisted systems; and greater computational capabilities to handle the processing of data. The Brigham and Women’s Hospital’s “AMIGO” suite is described as a setting for progress to continue in ioMRI by incorporating other modalities including molecular imaging. A call to action is made to have other researchers and clinicians in the field of image guided therapy to work together to integrate imaging with therapy delivery systems (such as laser, MRgFUS, endoscopic, and robotic surgery devices).


Image guided therapy Imaging Interventional Intraoperative MRI (ioMRI) Magnetic resonance MR Neurosurgery 


  1. 1.
    Black PM, Alexander E 3rd, Martin C et al (1999) Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 45(3):423–431PubMedCrossRefGoogle Scholar
  2. 2.
    Dimaio SP, Archip N, Hata N et al (2006) Image-guided neurosurgery at Brigham and Women’s Hospital. IEEE Eng Med Biol Mag 25(5):67–73PubMedCrossRefGoogle Scholar
  3. 3.
    Hall WA, Martin AJ, Liu H et al (1998) High-field strength interventional magnetic resonance imaging for pediatric neurosurgery. Pediatr Neurosurg 29(5):253–259PubMedCrossRefGoogle Scholar
  4. 4.
    Jolesz FA, Talos IF, Schwartz RB et al (2002) Intraoperative magnetic resonance imaging and magnetic resonance imaging-guided therapy for brain tumors. Neuroimaging Clin N Am 12(4):665–683PubMedCrossRefGoogle Scholar
  5. 5.
    Lewin JS, Metzger AK (2001) Intraoperative MR systems. Low-field approaches. Neuroimaging Clin N Am 11(4):611–628PubMedGoogle Scholar
  6. 6.
    Schenck JF, Jolesz FA, Roemer PB, Cline HE, Lorensen WE, Kikinis R et al (1995) Superconducting open-configuration MR imaging system for image-guided therapy. Radiology 195(3):805–814PubMedGoogle Scholar
  7. 7.
    Schwartz RB, Hsu L, Wong TZ et al (1999) Intraoperative MR imaging guidance for intracranial neurosurgery: experience with the first 200 cases. Radiology 211(2):477–488PubMedGoogle Scholar
  8. 8.
    Schulder M, Liang D, Carmel PW (2001) Cranial surgery navigation aided by a compact intraoperative magnetic resonance imager. J Neurosurg 94(6):936–945PubMedCrossRefGoogle Scholar
  9. 9.
    Steinmeier R, Fahlbusch R, Ganslandt O et al (1998) Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Neurosurgery 43(4):739–747, discussion 747–748PubMedCrossRefGoogle Scholar
  10. 10.
    Sutherland GR, Kaibara T, Louw D, Hoult DI, Tomanek B, Saunders J (1999) A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg 91(5):804–813PubMedCrossRefGoogle Scholar
  11. 11.
    Jolesz FA, Kikinis R, Talos IF (2001) Neuronavigation in interventional MR imaging. Frameless stereotaxy. Neuroimaging Clin N Am 11(4):685–689PubMedGoogle Scholar
  12. 12.
    Nabavi A, Black PM, Gering DT et al (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48(4):787–797, discussion 797–798PubMedGoogle Scholar
  13. 13.
    Anzai Y, Lufkin R, DeSalles A, Hamilton DR, Farahani K, Black KL (1995) Preliminary experience with MR-guided thermal ablation of brain tumors. AJNR Am J Neuroradiol 16(1):39–48, discussion 49–52PubMedGoogle Scholar
  14. 14.
    Ascher PW, Justich E, Schröttner O (1991) Interstitial thermotherapy of central brain tumors with the Nd:YAG laser under real-time monitoring by MRI. J Clin Laser Med Surg 9(1):79–83PubMedGoogle Scholar
  15. 15.
    Bettag M, Ulrich F, Schober R et al (1991) Stereotactic laser therapy in cerebral gliomas. Acta Neurochir Suppl (Wien) 52:81–83CrossRefGoogle Scholar
  16. 16.
    Fan M, Ascher PW, Schröttner O, Ebner F, Germann RH, Kleinert R (1992) Interstitial 1.06 Nd:YAG laser thermotherapy for brain tumors under real-time monitoring of MRI: experimental study and phase I clinical trial. J Clin Laser Med Surg 10(5):355–356PubMedGoogle Scholar
  17. 17.
    Kahn T, Bettag M, Ulrich F et al (1994) MRI-guided laser-induced interstitial thermotherapy of cerebral neoplasms. J Comput Assist Tomogr 18:519–532PubMedCrossRefGoogle Scholar
  18. 18.
    Kettenbach J, Silverman SG, Hata N et al (1998) Monitoring and visualization techniques for MR-guided laser ablations in an open MR system. J Magn Reson Imaging 8(4):933–943PubMedCrossRefGoogle Scholar
  19. 19.
    McDannold NJ, Jolesz FA (2000) Magnetic resonance image-guided thermal ablations. Top Magn Reson Imaging 11(3):191–202PubMedCrossRefGoogle Scholar
  20. 20.
    Stollberger R, Ascher PW, Huber D, Renhart W, Radner H, Ebner F (1998) Temperature monitoring of interstitial thermal tissue coagulation using MR phase images. J Magn Reson Imaging 8(1):188–196PubMedCrossRefGoogle Scholar
  21. 21.
    Cline HE, Hynynen K, Watkins RD et al (1995) Focused US system for MR imaging-guided tumor ablation. Radiology 194(3):731–737PubMedGoogle Scholar
  22. 22.
    Hynynen K, Vykhodtseva NI, Chung AH, Sorrentino V, Colucci V, Jolesz FA (1997) Thermal effects of focused ultrasound on the brain: determination with MR imaging. Radiology 204(1):247–253PubMedGoogle Scholar
  23. 23.
    Jolesz FA, Hynynen K (2002) Magnetic resonance image-guided focused ultrasound surgery. Cancer J 8(suppl 1):S100–S112PubMedGoogle Scholar
  24. 24.
    Jolesz FA, Hynynen K, McDannold N, Tempany C (2005) MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery. Magn Reson Imaging Clin N Am 13(3):545–60PubMedCrossRefGoogle Scholar
  25. 25.
    Jolesz FA, McDannold N (2008) Current status and future potential of MRI-guided focused ultrasound surgery. J Magn Reson Imaging 27(2):391–399PubMedCrossRefGoogle Scholar
  26. 26.
    McDannold N, Hynynen K, Wolf D, Wolf G, Jolesz F (1998) MRI evaluation of thermal ablation of tumors with focused ultrasound. J Magn Reson Imaging 8(1):91–100PubMedCrossRefGoogle Scholar
  27. 27.
    Claus EB, Horlacher A, Hsu L (2005) Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer 103(6):1227–1233PubMedCrossRefGoogle Scholar
  28. 28.
    Mittal S, Black PM (2006) Intraoperative magnetic resonance imaging in neurosurgery: the Brigham concept. Acta Neurochir Suppl 98:77–86PubMedCrossRefGoogle Scholar
  29. 29.
    Nimsky C, Fujita A, Ganslandt O, Von Keller B, Fahlbusch R (2004) Volumetric assessment of glioma removal by intraoperative high-field magnetic resonance imaging. Neurosurgery 55(2):358–370, discussion 370–371PubMedCrossRefGoogle Scholar
  30. 30.
    Bradley WG (2002) Achieving gross total resection of brain tumors: intraoperative MR imaging can make a big difference. AJNR Am J Neuroradiol 23(3):348–349PubMedGoogle Scholar
  31. 31.
    Nimsky C, Ganslandt O, Von Keller B, Romstöck J, Fahlbusch R (2004) Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. Radiology 233(1):67–78PubMedCrossRefGoogle Scholar
  32. 32.
    Truwit CL, Hall WA (2006) Intraoperative magnetic resonance imaging-guided neurosurgery at 3-T. Neurosurgery 58(4 suppl 2):ONS-338–345, discussion ONS-345–346Google Scholar
  33. 33.
    Hall WA, Liu H, Truwit CL (2005) Functional magnetic resonance imaging-guided resection of low-grade gliomas. Surg Neurol 64(1):20–27, discussionPubMedCrossRefGoogle Scholar
  34. 34.
    Golby AJ, McConnell KA (2004) Functional brain mapping options for minimally invasive surgery. In: Black PM, Proctor M (eds) Minimally invasive neurosurgery. Humana Press, Totawa, NJ, pp 87–106Google Scholar
  35. 35.
    Nimsky C, Ganslandt O, Kober H et al (1999) Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery 44(6):1249–1255, discussion 1255–1256PubMedGoogle Scholar
  36. 36.
    Gering DT, Nabavi A, Kikinis R et al (2001) An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging 13(6):967–975PubMedCrossRefGoogle Scholar
  37. 37.
    Nabavi A, Gering DT, Kacher DF et al (2003) Surgical navigation in the open MRI. Acta Neurochir Suppl 85:121–125PubMedCrossRefGoogle Scholar
  38. 38.
    Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47(5):1070–1079, discussion 1079–1080PubMedCrossRefGoogle Scholar
  39. 39.
    Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R (2001) Intraoperative compensation for brain shift. Surg Neurol 56(6):357–364, discussion 364–365PubMedCrossRefGoogle Scholar
  40. 40.
    Clatz O, Delingette H, Talos IF et al (2005) Hybrid formulation of the model-based non-rigid registration problem to improve accuracy and robustness. Med Image Comput Comput Assist Interv 8(Pt 2):295–302PubMedGoogle Scholar
  41. 41.
    Ferrant M, Nabavi A, Macq B et al (2002) Serial registration of intraoperative MR images of the brain. Med Image Anal 6(4):337–359PubMedCrossRefGoogle Scholar
  42. 42.
    Warfield SK, Haker SJ, Talos IF et al (2005) Capturing intraoperative deformations: research experience at Brigham and Women’s Hospital. Med Image Anal 9(2):145–162PubMedCrossRefGoogle Scholar
  43. 43.
    White PJ, Whalen S, Tang SC, Clement G, Jolesz F, Golby AJ (2009) An intraoperative brain shift monitor using shear mode transcranial ultrasound: preliminary results. J Ultrasound Med 28(2):191–203PubMedGoogle Scholar
  44. 44.
    Chinzei K, Miller K (2001) Towards MRI guided surgical manipulator. Med Sci Monit 7(1):153–163PubMedGoogle Scholar
  45. 45.
    Chinzei K, Warfield S, Hata N, Tempany C, Jolesz F, Kikinis R (2003) Planning, simulation and assistance with intraoperative MRI. Minim Invasive Ther Allied Technol 12(1):59–64PubMedGoogle Scholar
  46. 46.
    DiMaio SP, Pieper S, Chinzei K et al (2007) Robot-assisted needle placement in open MRI: system architecture, integration and validation. Comput Aided Surg 12(1):15–24PubMedGoogle Scholar
  47. 47.
    Elhawary H, Tse ZT, Hamed A, Rea M, Davies BL, Lamperth MU (2008) The case for MR-compatible robotics: a review of the state of the art. Int J Med Robot 4(2):105–113PubMedCrossRefGoogle Scholar
  48. 48.
    Elhawary H, Zivanovic A, Davies B, Lampérth M (2006) A review of magnetic resonance imaging compatible manipulators in surgery. Proc Inst Mech Eng 220(3):413–424Google Scholar
  49. 49.
    Masamune K, Kobayashi E (1995) Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guid Surg 1(4):242–248PubMedCrossRefGoogle Scholar
  50. 50.
    Sutherland GR, Latour I, Greer AD (2008) Integrating an image-guided robot with intraoperative MRI: a review of the design and construction of neuroArm. IEEE Eng Med Biol Mag 27(3):59–65PubMedCrossRefGoogle Scholar
  51. 51.
    Sutherland GR, Latour I, Greer AD, Fielding T, Feil G, Newhook P (2008) An image-guided magnetic resonance-compatible surgical robot. Neurosurgery 62(2):286–292, discussion 292–293PubMedCrossRefGoogle Scholar
  52. 52.
    Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits. Radiology 220(3):640–646PubMedCrossRefGoogle Scholar
  53. 53.
    Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006) Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun 340(4):1085–1090PubMedCrossRefGoogle Scholar
  54. 54.
    Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006) Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc Natl Acad Sci U S A 103(31):11719–11723PubMedCrossRefGoogle Scholar
  55. 55.
    Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121(4):901–907PubMedCrossRefGoogle Scholar
  56. 56.
    Vykhodtseva N, McDannold N, Hynynen K (2006) Induction of apoptosis in vivo in the rabbit brain with focused ultrasound and optison. Ultrasound Med Biol 32(12):1923–1929PubMedCrossRefGoogle Scholar
  57. 57.
    Yoo SS, Lee JH, Zhang Y et al (2008) FUS-mediated reversible modulation of region-specific brain function. Proc MRgFUS 2008:10Google Scholar
  58. 58.
    Colucci V, Strichartz G, Jolesz F, Vykhodtseva N, Hynynen K (2009) Focused ultrasound effects on nerve action potential in vitro. Ultrasound Med Biol 35(10):1737–1747PubMedCrossRefGoogle Scholar
  59. 59.
    Currier DP, Greathouse D, Swift T (1978) Sensory nerve conduction: effect of ultrasound. Arch Phys Med Rehabil 59(4):181–185PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2011

Authors and Affiliations

  1. 1.B. Leonard Holman Professor of Radiology, Division of MRI and Image Guided Therapy Program, Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations