Geometric Involutive Bases and Applications to Approximate Commutative Algebra

Chapter
Part of the Texts and Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

This article serves to give an introduction to some classical results on involutive bases for polynomial systems. Further, we survey recent developments, including a modification of the above: geometric projected involutive bases, for the treatment of approximate systems, and their application to ideal membership testing and Gröbner basis computation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bonasia, F. Lemaire, G. Reid, R. Scott, and L. Zhi. Determination of Approximate Symmetries of Differential Equations. Centre Recherches Mathématiques, CRM Proceedings and Lecture Notes, Vol. 39, pp. 233–250, 2004.Google Scholar
  2. 2.
    B. Buchberger. An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Ideal. Ph.D. Thesis, Math. Inst., Univ. of Innsbruck, Austria, 1965.Google Scholar
  3. 3.
    James A. Cadzow. Signal Enhancement - A Composite Property Mapping Algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 36, No. 1, pp. 49–62, January 1988.MATHCrossRefGoogle Scholar
  4. 4.
    Cartan, E. Les Systèmes Différentiels Extérieurs et leurs Applications Géométriques. Hermann, Paris, 1945.MATHGoogle Scholar
  5. 5.
    David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms. Springer-Verlag New York, Inc., 1992.Google Scholar
  6. 6.
    Barry H. Dayton. Numerical Local Rings and Solution of Nonlinear Systems. Proc. International Workshop on Symbolic-Numeric Computation (SNC) Proceedings, pp. 79–86, 2007.Google Scholar
  7. 7.
    C. Eckart, G. Young. The Approximation of one Matrix by Another of Lower Rank. Psychometrika, Vol. 1, pp. 211–218, 1936.CrossRefGoogle Scholar
  8. 8.
    Gerdt, V. and Blinkov, Y. Involutive Bases of Polynomial Ideals. Mathematics and Computers in Simulation, Vol. 45, pp. 519–541, 1998.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    D. Hilbert. Über die Theorie der algebraischen Formen. Math. Annalen, Vol. 36, pp. 473–534, 1890.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Erich Kaltofen, Zhengfeng Yang, and Lihong Zhi. Approximate Greatest Common Divisors of Several Polynomials with Linearly Constrained Coefficients and Singular Polynomials. Proc. ISSAC 2006, Jean-Guillaume Dumas, Ed., ACM Press, pp. 169–176, 2006.Google Scholar
  11. 11.
    Kuranishi, M. On E. Cartan’s Prolongation Theorem of Exterior Differential Systems. Amer. J. of Math., Vol. 79, pp. 1–47, 1957.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    P. Lemmerling, N. Mastronardi, and S. Van Huffel. Fast Algorithm for Solving the Hankel/Toeplitz Structured Total Least Squares Problem. Numerical Algorithms, Vol. 23, pp. 371–392, 2000.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Leykin. Numerical Primary Decomposition. Proc. ISSAC 2008, ACM Press, pp. 165–172, 2008.Google Scholar
  14. 14.
    F. S. Macaulay. The Algebraic Theory of Modular Systems. Cambridge Tracts in Math. and Math. Physics, Vol. 19, 1916.Google Scholar
  15. 15.
    F. S. Macaulay. Some Properties of Enumeration in the Theory of Modular Systems. Proceedings of the London Mathematical Society, Vol. 26, pp. 531–555, 1927.CrossRefGoogle Scholar
  16. 16.
    B. Malgrange. Cartan Involutiveness = Mumford Regularity. Contemporary Mathmatics, Vol. 331, pp. 193–205, 2003.MathSciNetGoogle Scholar
  17. 17.
    H.M. Möller and T. Sauer. H-bases for polynomial interpolation and system solving. Advances Comput. Math., Vol. 12, pp. 23–35, 2000.Google Scholar
  18. 18.
    B. Mourrain. A New Criterion for Normal Form Algorithms. In: Fossorier, M., Imai, H., Lin, S., Poli, A.(Eds.), AAECC. Vol. 1719. Springer, Berlin, pp. 430–443, 1999.Google Scholar
  19. 19.
    Haesun Park, Lei Zhang, and J. Ben Rosen. Low Rank Approximation of a Hankel Matrix by Structured Total Least Norm. BIT Numerical Mathematics, Springer Netherlands, Vol. 39, No. 4, pp. 757–779, December 1999.Google Scholar
  20. 20.
    Pommaret, J. F. Systems of Partial Differential Equations and Lie Pseudogroups. Gordon and Breach Science Publishers, 1978.MATHGoogle Scholar
  21. 21.
    Greg Reid, Robin Scott, Wenyuan Wu, and Lihong Zhi. Algebraic and Geometric Properties of Nearby Projectively Involutive Polynomial Systems (preprint).Google Scholar
  22. 22.
    Greg Reid, Jianliang Tang, and Lihong Zhi. A Complete Symbolic-Numeric Linear Method for Camera Pose Determination. Proc. ISSAC 2003, ACM Press, pp. 215–233, 2003.Google Scholar
  23. 23.
    Greg Reid and Lihong Zhi. Solving Polynomial Systems via Symbolic-Numeric Reduction to Geometric Involutive Form. J. Symoblic Comput., Vol. 44, No.3, pp. 280–291, 2009.MATHCrossRefGoogle Scholar
  24. 24.
    Robin J. Scott. Approximate Gröbner Bases - a Backwards Approach. Master’s Thesis, University of Western Ontario, 2006. Available at: http://www.orcca.on.ca/~reid/Scott/SRWZ-ScottThesis06.pdf
  25. 25.
    W. M. Seiler. Analysis and Application of the Formal Theory of Partial Differential Equations. Ph.D. Thesis, Lancaster University, 1994.Google Scholar
  26. 26.
    Werner M. Seiler. Involution - The Formal Theory of Differential Equations and its Applications in Computer Algebra and Numerical Analysis. Habilitation Thesis, Univ. of Mannheim, 2002.Google Scholar
  27. 27.
    Spencer, D. Overdetermined Systems of Linear Differential Equations. Bulletin A.M.S. Vol. 75, pp. 179–239, 1969.MATHCrossRefGoogle Scholar
  28. 28.
    Hans J. Stetter. Numerical Polynomial Algebra. SIAM, 2004.Google Scholar
  29. 29.
    M. Trébuchet Philippe. Vers une résolution stable et rapide des équations algébriques. Ph.D. Thesis, l’Universite de Paris 6, 2002.Google Scholar
  30. 30.
    Wenyuan Wu and Greg Reid. Application of Numerical Algebraic Geometry and Numerical Linear Algebra to PDE. Proc. ISSAC 2006, ACM Press, pp. 345–352, 2006.Google Scholar

Copyright information

© Springer-Verlag Vienna 2009

Authors and Affiliations

  • Robin Scott
    • 1
  • Greg Reid
    • 2
  • Wenyuan Wu
    • 3
  • Lihong Zhi
    • 4
  1. 1.Department of Mathematics and StatisticsCarleton UniversityOttawaCanada
  2. 2.Department of Applied MathematicsUniversity of Western OntarioLondonCanada
  3. 3.Department of MathematicsMichigan State UniversityEast LansingUSA
  4. 4.Key Lab of Mathematics MechanizationAMSS, Chinese Academy of SciencesBeijingChina

Personalised recommendations