Specific Vulnerability of Substantia Nigra Compacta Neurons

  • Marten P. SmidtEmail author
Part of the Journal of Neural Transmission. Supplementa book series (NEURALTRANS, volume 73)


The specific loss of substantia nigra compacta (SNc) neurons in Parkinson's disease (PD) has been the main driving force in initiating research efforts to unravel the apparent SNc-specific vulnerability. Initially, metabolic constraints due to high dopamine turnover have been the main focus in the attempts to solve this issue. Recently, it has become clear that fundamental differences in the molecular signature are adding to the neuronal vulnerability and provide specific molecular dependencies. Here, the different processes that define the molecular background of SNc vulnerability are summarized.


Dopamine Mesodiencephalon Midbrain Parkinson Vulnerability 



Cyclization recombinase


Dopamine transporter


3,4-dihydroxyphenylacetic acid






Glial cell line-derived neurotrophic factor


Monoamine oxidase A


Mesodiencephalic dopaminergic


Parkinson’s disease


Retinoic acid


Vitamin A




Substantia nigra compacta


Transforming growth factor β


Ventral tegmental area




  1. Acampora D, Gulisano M, Simeone A (1999) Otx genes and the genetic control of brain morphogenesis. Mol Cell Neurosci 13(1):1–8PubMedGoogle Scholar
  2. Acampora D, Postiglione MP, Avantaggiato V et al (2000) The role of Otx and Otp genes in brain development. Int J Dev Biol 44(6):669–677PubMedGoogle Scholar
  3. Acampora D, Gulisano M, Broccoli V et al (2001) Otx genes in brain morphogenesis. Prog Neurobiol 64(1):69–95PubMedGoogle Scholar
  4. Acampora D, Annino A, Tuorto F et al (2005) Otx genes in the evolution of the vertebrate brain. Brain Res Bull 66(4–6):410–420PubMedGoogle Scholar
  5. Alexi T, Hefti F (1993) Trophic actions of transforming growth factor alpha on mesencephalic dopaminergic neurons developing in culture. Neuroscience 55(4):903–918PubMedGoogle Scholar
  6. Alfahel-Kakunda A, Silverman WF (1997) Calcium-binding proteins in the substantia nigra and ventral tegmental area during development: correlation with dopaminergic compartmentalization. Brain Res Dev Brain Res 103(1):9–20PubMedGoogle Scholar
  7. Altar CA, Boylan CB, Fritsche M et al (1994) The neurotrophins NT-4/5 and BDNF augment serotonin, dopamine, and GABAergic systems during behaviorally effective infusions to the substantia nigra. Exp Neurol 130(1):31–40PubMedGoogle Scholar
  8. Alward WL, Semina EV, Kalenak JW et al (1998) Autosomal dominant iris hypoplasia is caused by a mutation in the Rieger syndrome (RIEG/PITX2) gene. Am J Ophthalmol 125(1):98–100PubMedGoogle Scholar
  9. Andersson E, Jensen JB, Parmar M et al (2006a) Development of the mesencephalic dopaminergic neuron system is compromised in the absence of neurogenin 2. Development 133(3):507–516PubMedGoogle Scholar
  10. Andersson E, Tryggvason U, Deng Q et al (2006b) Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124(2):393–405PubMedGoogle Scholar
  11. Baquet ZC, Bickford PC, Jones KR (2005) Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 25(26):6251–6259PubMedGoogle Scholar
  12. Beck KD (1994) Functions of brain-derived neurotrophic factor, insulin-like growth factor-I and basic fibroblast growth factor in the development and maintenance of dopaminergic neurons. Prog Neurobiol 44(5):497–516PubMedGoogle Scholar
  13. Brederlau A, Faigle R, Kaplan P et al (2002) Bone morphogenetic proteins but not growth differentiation factors induce dopaminergic differentiation in mesencephalic precursors. Mol Cell Neurosci 21(3):367–378PubMedGoogle Scholar
  14. Burbach JPH, Smits SM, Smidt MP (2003) Transcription factors in the development of midbrain dopamine neurons. Ann NY Acad Sci 991(Jun):61–68PubMedGoogle Scholar
  15. Caldwell MA, Svendsen CN (1998) Heparin, but not other proteoglycans potentiates the mitogenic effects of FGF-2 on mesencephalic precursor cells. Exp Neurol 152(1):1–10PubMedGoogle Scholar
  16. Campione M, Steinbeisser H, Schweickert A et al (1999) The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development 126(6):1225–1234PubMedGoogle Scholar
  17. Chalazonitis A, Kessler JA, Twardzik DR et al (1992) Transforming growth factor alpha, but not epidermal growth factor, promotes the survival of sensory neurons in vitro. J Neurosci 12(2):583–594PubMedGoogle Scholar
  18. Chung CY, Seo H, Sonntag K et al (2005a) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 14(13):1709–1725PubMedGoogle Scholar
  19. Chung S, Hedlund E, Hwang M et al (2005b) The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Mol Cell Neurosci 28(2):241–252PubMedGoogle Scholar
  20. Chung CY, Koprich JB, Endo S et al (2007) An endogenous serine/threonine protein phosphatase inhibitor, G-substrate, reduces vulnerability in models of Parkinson's disease. J Neurosci 27(31):8314–8323PubMedGoogle Scholar
  21. Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39(6):889–909PubMedGoogle Scholar
  22. Espejo M, Cutillas B, Arenas TE et al (2000) Increased survival of dopaminergic neurons in striatal grafts of fetal ventral mesencephalic cells exposed to neurotrophin-3 or glial cell line-derived neurotrophic factor. Cell Transplant 9(1):45–53PubMedGoogle Scholar
  23. Farkas LM, Krieglstein K (2002) Heparin-binding epidermal growth factor-like growth factor (HB-EGF) regulates survival of midbrain dopaminergic neurons. J Neural Transm 109(3):267–277PubMedGoogle Scholar
  24. Farkas LM, Dünker N, Roussa E et al (2003) Transforming growth factor-beta(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J Neurosci 23(12):5178–5186PubMedGoogle Scholar
  25. Ferri ALM, Lin W, Mavromatakis YE et al (2007) Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development 134(15):2761–2769PubMedGoogle Scholar
  26. Galter D, Buervenich S, Carmine A et al (2003) ALDH1 mRNA: presence in human dopamine neurons and decreases in substantia nigra in Parkinson's disease and in the ventral tegmental area in schizophrenia. Neurobiol Dis 14(3):637–647PubMedGoogle Scholar
  27. Galvin JE (2006) Interaction of alpha-synuclein and dopamine metabolites in the pathogenesis of Parkinson's disease: a case for the selective vulnerability of the substantia nigra. Acta Neuropathol 112(2):115–126PubMedGoogle Scholar
  28. Glavic A, Gümez-Skarmeta JL, Mayor R (2002) The homeoprotein Xiro1 is required for midbrain-hindbrain boundary formation. Development 129(7):1609–1621PubMedGoogle Scholar
  29. Greene JG, Dingledine R, Greenamyre JT (2005) Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiol Dis 18(1):19–31PubMedGoogle Scholar
  30. Grünblatt E, Mandel S, Jacob-Hirsch J et al (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 111(12):1543–1573PubMedGoogle Scholar
  31. Haber SN, Ryoo H, Cox C et al (1995) Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp Neurol 362(3):400–410PubMedGoogle Scholar
  32. Hagg T (1998) Neurotrophins prevent death and differentially affect tyrosine hydroxylase of adult rat nigrostriatal neurons in vivo. Exp Neurol 149(1):183–192PubMedGoogle Scholar
  33. Hanke M, Farkas LM, Jakob M et al (2004) Heparin-binding epidermal growth factor-like growth factor: a component in chromaffin granules which promotes the survival of nigrostriatal dopaminergic neurones in vitro and in vivo. Neuroscience 124(4):757–766PubMedGoogle Scholar
  34. Hess EJ (1996) Identification of the weaver mouse mutation: the end of the beginning. Neuron 16(6):1073–1076PubMedGoogle Scholar
  35. Horger BA, Nishimura MC, Armanini M et al (1998) Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J Neurosci 18(13):4929–4937PubMedGoogle Scholar
  36. Hwang DY, Ardayfio P, Kang UJ et al (2003) Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol Brain Res 114(2):123–131PubMedGoogle Scholar
  37. Hyman C, Hofer M, Barde YA et al (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350(6315):230–232PubMedGoogle Scholar
  38. Hyman C, Juhasz M, Jackson C et al (1994) Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J Neurosci 14(1):335–347PubMedGoogle Scholar
  39. Hynes M, Rosenthal A (1999) Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr Opin Neurobiol 9(1):26–36PubMedGoogle Scholar
  40. Hynes M, Porter JA, Chiang C et al (1995) Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron 15(1):35–44PubMedGoogle Scholar
  41. Hynes M, Ye W, Wang K et al (2000) The seven-transmembrane receptor smoothened cell-autonomously induces multiple ventral cell types. Nat Neurosci 3(1):41–46PubMedGoogle Scholar
  42. Iwakura Y, Piao Y-S, Mizuno M et al (2005) Influences of dopaminergic lesion on epidermal growth factor-ErbB signals in Parkinson's disease and its model: neurotrophic implication in nigrostriatal neurons. J Neurochem 93(4):974–983PubMedGoogle Scholar
  43. Jacobs FMJ, Smits SM, Hornman KJM et al (2006) Strategies to unravel molecular codes essential for the development of meso-diencephalic dopaminergic neurons. J Physiol 575(Pt 2):397–402PubMedGoogle Scholar
  44. Jacobs FMJ, Smits SM, Noorlander CW et al (2007) Retinoic acid counteracts developmental defects in the substantia nigra caused by Pitx3 deficiency. Development 134(14):2673–2684PubMedGoogle Scholar
  45. Jordan J, Böttner M, Schluesener HJ et al (1997) Bone morphogenetic proteins: neurotrophic roles for midbrain dopaminergic neurons and implications of astroglial cells. Eur J Neurosci 9(8):1699–1709PubMedGoogle Scholar
  46. Joyner AL, Liu A, Millet S (2000) Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr Opin Cell Biol 12(6):736–741PubMedGoogle Scholar
  47. Kaneda K, Imanishi M, Nambu A et al (2003) Differential expression patterns of mGluR1 alpha in monkey nigral dopamine neurons. Neuroreport 14(7):947–950PubMedGoogle Scholar
  48. Kele J, Simplicio N, Ferri ALM et al (2006) Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. Development 133(3):495–505PubMedGoogle Scholar
  49. Kramer ER, Aron L, Ramakers GMJ et al (2007) Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 5(3):e39PubMedGoogle Scholar
  50. Krauss JK, Mohadjer M, Wakhloo AK et al (1991) Dystonia and akinesia due to pallidoputaminal lesions after disulfiram intoxication. Mov Disord 6(2):166–170PubMedGoogle Scholar
  51. Krieglstein K (2004) Factors promoting survival of mesencephalic dopaminergic neurons. Cell Tissue Res 318(1):73–80PubMedGoogle Scholar
  52. Krieglstein K, Suter-Crazzolara C, Fischer WH et al (1995a) TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J 14(4):736–742PubMedGoogle Scholar
  53. Krieglstein K, Suter-Crazzolara C, Hötten G et al (1995b) Trophic and protective effects of growth/differentiation factor 5, a member of the transforming growth factor-beta superfamily, on midbrain dopaminergic neurons. J Neurosci Res 42(5):724–732PubMedGoogle Scholar
  54. Krieglstein K, Maysinger D, Unsicker K (1996) The survival response of mesencephalic dopaminergic neurons to the neurotrophins BDNF and NT-4 requires priming with serum: comparison with members of the TGF-beta superfamily and characterization of the serum-free culture system. J Neural Transm Suppl 47:247–258PubMedGoogle Scholar
  55. Legros H, Dingeval M-G, Janin F et al (2004) Toxicity of a treatment associating dopamine and disulfiram for catecholaminergic neuroblastoma SH-SY5Y cells: relationships with 3, 4-dihydroxyphenylacetaldehyde formation. Neurotoxicology 25(3):365–375PubMedGoogle Scholar
  56. Levick V, Coffey H, D'Mello SR (1995) Opposing effects of thapsigargin on the survival of developing cerebellar granule neurons in culture. Brain Res 676(2):325–335PubMedGoogle Scholar
  57. Lin J, Freeman MR (2003) Transactivation of ErbB1 and ErbB2 receptors by angiotensin II in normal human prostate stromal cells. Prostate 54(1):1–7PubMedGoogle Scholar
  58. Lindholm P, Voutilainen MH, Laurén J et al (2007) Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 448(7149):73–77PubMedGoogle Scholar
  59. Lingor P, Unsicker K, Krieglstein K (2000) GDNF and NT-4 protect midbrain dopaminergic neurons from toxic damage by iron and nitric oxide. Exp Neurol 163(1):55–62PubMedGoogle Scholar
  60. Liss B, Bruns R, Roeper J (1999) Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J 18(4):833–846PubMedGoogle Scholar
  61. Liss B, Haeckel O, Wildmann J et al (2005) K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8(12):1742–1751PubMedGoogle Scholar
  62. Mandel S, Grunblatt E, Riederer P et al (2005) Gene expression profiling of sporadic Parkinson's disease substantia nigra pars compacta reveals impairment of ubiquitin-proteasome subunits, SKP1A, aldehyde dehydrogenase, and chaperone HSC-70. Ann NY Acad Sci 1053:356–375PubMedGoogle Scholar
  63. Marchitti SA, Deitrich RA, Vasiliou V (2007) Neurotoxicity and metabolism of the catecholamine-derived 3, 4-dihydroxyphenylacetaldehyde and 3, 4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev 59(2):125–150PubMedGoogle Scholar
  64. Maxwell SL, Ho H-Y, Kuehner E et al (2005) Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development. Dev Biol 282(2):467–479PubMedGoogle Scholar
  65. McCaffery P, Dräger UC (1994a) High levels of a retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. Proc Natl Acad Sci USA 91(16):7772–7776PubMedGoogle Scholar
  66. McCaffery P, Dräger UC (1994b) Hot spots of retinoic acid synthesis in the developing spinal cord. Proc Natl Acad Sci USA 91(15):7194–7197PubMedGoogle Scholar
  67. Meyer M, Matarredona ER, Seiler RW et al (2001) Additive effect of glial cell line-derived neurotrophic factor and neurotrophin-4/5 on rat fetal nigral explant cultures. Neuroscience 108(2):273–284PubMedGoogle Scholar
  68. Millet S, Campbell K, Epstein DJ et al (1999) A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401(6749):161–164PubMedGoogle Scholar
  69. Mizuno Y, Hattori N, Kubo S-I et al (2008) Progress in the pathogenesis and genetics of Parkinson's disease. Philos Trans R Soc Lond B Biol Sci 363(1500):2215–2227PubMedGoogle Scholar
  70. Murase S, McKay RD (2006) A specific survival response in dopamine neurons at most risk in Parkinson's disease. J Neurosci 26(38):9750–9760PubMedGoogle Scholar
  71. Nohe A, Keating E, Knaus P et al (2004) Signal transduction of bone morphogenetic protein receptors. Cell Signal 16(3):291–299PubMedGoogle Scholar
  72. Numan S, Gall CM, Seroogy KB (2005) Developmental expression of neurotrophins and their receptors in postnatal rat ventral midbrain. J Mol Neurosci 27(2):245–260PubMedGoogle Scholar
  73. Nunes I, Tovmasian LT, Silva RM et al (2003) Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 100(7):4245–4250PubMedGoogle Scholar
  74. O'Keeffe GW, Dockery P, Sullivan AM (2004) Effects of growth/differentiation factor 5 on the survival and morphology of embryonic rat midbrain dopaminergic neurones in vitro. J Neurocytol 33(5):479–488PubMedGoogle Scholar
  75. Peterson AL, Nutt JG (2008) Treatment of Parkinson's disease with trophic factors. Neurotherapeutics 5(2):270–280PubMedGoogle Scholar
  76. Petrova P, Raibekas A, Pevsner J et al (2003) MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci 20(2):173–188PubMedGoogle Scholar
  77. Poulsen KT, Armanini MP, Klein RD et al (1994) TGF beta 2 and TGF beta 3 are potent survival factors for midbrain dopaminergic neurons. Neuron 13(5):1245–1252PubMedGoogle Scholar
  78. Prakash N, Brodski C, Naserke T et al (2006) A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. Development 133(1):89–98PubMedGoogle Scholar
  79. Puelles E, Acampora D, Lacroix E et al (2003) Otx dose-dependent integrated control of antero-posterior and dorso-ventral patterning of midbrain. Nat Neurosci 6(5):453–460PubMedGoogle Scholar
  80. Puelles E, Annino A, Tuorto F et al (2004) Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. Development 131(9):2037–2048PubMedGoogle Scholar
  81. Reuss B, Unsicker K (2000) Survival and differentiation of dopaminergic mesencephalic neurons are promoted by dopamine-mediated induction of FGF-2 in striatal astroglial cells. Mol Cell Neurosci 16(6):781–792PubMedGoogle Scholar
  82. Rhinn M, Brand M (2001) The midbrain-hindbrain boundary organizer. Curr Opin Neurobiol 11(1):34–42PubMedGoogle Scholar
  83. Roussa E, Farkas LM, Krieglstein K (2004) TGF-beta promotes survival on mesencephalic dopaminergic neurons in cooperation with Shh and FGF-8. Neurobiol Dis 16(2):300–310PubMedGoogle Scholar
  84. Roussa E, Wiehle M, Dünker N et al (2006) TGF-beta is required for differentiation of mouse mesencephalic progenitors into dopaminergic neurons in vitro and in vivo. Ectopic induction in dorsal mesencephalon. Stem Cells 24(9):2120–2129Google Scholar
  85. Sariola H, Saarma M (2003) Novel functions and signalling pathways for GDNF. J Cell Sci 116(Pt 19):3855–3862PubMedGoogle Scholar
  86. Saucedo-Cardenas O, Quintana-Hau JD, Le WD et al (1998) Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci U S A 95(7):4013–4018PubMedGoogle Scholar
  87. Schein JC, Hunter DD, Roffler-Tarlov S (1998) Girk2 expression in the ventral midbrain, cerebellum, and olfactory bulb and its relationship to the murine mutation weaver. Dev Biol 204(2):432–450PubMedGoogle Scholar
  88. Schmidt MJ, Sawyer BD, Perry KW et al (1982) Dopamine deficiency in the weaver mutant mouse. J Neurosci 2(3):376–380PubMedGoogle Scholar
  89. Segni AD, Shaharabani E, Stein RB et al (2005) Neuregulins rescue PC12-ErbB-4 cells from cell death induced by beta-amyloid peptide: involvement of PI3K and PKC. J Mol Neurosci 26(1):57–69PubMedGoogle Scholar
  90. Semina EV, Reiter RS, Murray JC (1997) Isolation of a new homeobox gene belonging to the Pitx/Rieg family: expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum Mol Genet 6(12):2109–2116PubMedGoogle Scholar
  91. Shults CW, Ray J, Tsuboi K et al (2000) Fibroblast growth factor-2-producing fibroblasts protect the nigrostriatal dopaminergic system from 6-hydroxydopamine. Brain Res 883(2):192–204PubMedGoogle Scholar
  92. Sidhu A, Wersinger C, Vernier P (2004) alpha-Synuclein regulation of the dopaminergic transporter: a possible role in the pathogenesis of Parkinson's disease. FEBS Lett 565(1–3):1–5PubMedGoogle Scholar
  93. Simeone A (2002) Towards the comprehension of genetic mechanisms controlling brain morphogenesis. Trends Neurosci 25(3):119–121PubMedGoogle Scholar
  94. Simeone A, Puelles E, Acampora D (2002) The Otx family. Curr Opin Genet Dev 12(4):409–415PubMedGoogle Scholar
  95. Simon HH, Saueressig H, Wurst W et al (2001) Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci 21(9):3126–3134PubMedGoogle Scholar
  96. Simon HH, Thuret S, Alberi L (2004) Midbrain dopaminergic neurons: control of their cell fate by the engrailed transcription factors. Cell Tissue Res 318(1):53–61PubMedGoogle Scholar
  97. Simon HH, Scholz C, O'Leary DDM (2005) Engrailed genes control developmental fate of serotonergic and noradrenergic neurons in mid- and hindbrain in a gene dose-dependent manner. Mol Cell Neurosci 28(1):96–105PubMedGoogle Scholar
  98. Smidt MP, Burbach JPH (2007) How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 8(1):21–32PubMedGoogle Scholar
  99. Smidt MP, van Schaick HS, Lanctôt C et al (1997) A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci USA 94(24):13305–13310PubMedGoogle Scholar
  100. Smidt MP, Cox JJ, van Schaick HS et al (2000a) Analysis of three Ptx2 splice variants on transcriptional activity and differential expression pattern in the brain. J Neurochem 75(5):1818–1825PubMedGoogle Scholar
  101. Smidt MP, Asbreuk CH, Cox JJ et al (2000b) A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci 3(4):337–341PubMedGoogle Scholar
  102. Smidt MP, Smits SM, Bouwmeester H et al (2004a) Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 131(5):1145–1155PubMedGoogle Scholar
  103. Smidt MP, Smits SM, Burbach JPH (2004b) Homeobox gene Pitx3 and its role in the development of dopamine neurons of the substantia nigra. Cell Tissue Res 318(1):35–43PubMedGoogle Scholar
  104. Smith D, Wagner E, Koul O et al (2001) Retinoic acid synthesis for the developing telencephalon. Cereb Cortex 11(10):894–905PubMedGoogle Scholar
  105. Smits SM, Ponnio T, Conneely OM et al (2003) Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur J Neurosci 18(7):1731–1738PubMedGoogle Scholar
  106. Smits SM, Terwisscha AF, van der Linden AJA et al (2004) Species differences in brain pre-pro-neurotensin/neuromedin N mRNA distribution: the expression pattern in mice resembles more closely that of primates than rats. Brain Res Mol Brain Res 125(1–2):22–28PubMedGoogle Scholar
  107. Smits SM, van der Nobelen S, Hornman KJM et al (2005) Signalling through phospholipase C beta 4 is not essential for midbrain dopaminergic neuron survival. Neuroscience 136(1):171–179PubMedGoogle Scholar
  108. Smits SM, Burbach JPH, Smidt MP (2006) Developmental origin and fate of meso-diencephalic dopamine neurons. Prog Neurobiol 78(1):1–16PubMedGoogle Scholar
  109. Sonnier L, Pen GL, Hartmann A et al (2007) Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1. J Neurosci 27(5):1063–1071PubMedGoogle Scholar
  110. Stachowiak MK, Moffett J, Maher P et al (1997) Growth factor regulation of cell growth and proliferation in the nervous system. A new intracrine nuclear mechanism. Mol Neurobiol 15(3):257–283Google Scholar
  111. Surmeier DJ (2007) Calcium, ageing, and neuronal vulnerability in Parkinson's disease. Lancet Neurol 6(10):933–938PubMedGoogle Scholar
  112. Szeto DP, Rodriguez-Esteban C, Ryan AK et al (1999) Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev 13(4):484–494PubMedGoogle Scholar
  113. Thuret S, Alavian KN, Gassmann M et al (2004) The neuregulin receptor, ErbB4, is not required for normal development and adult maintenance of the substantia nigra pars compacta. J Neurochem 91(6):1302–1311PubMedGoogle Scholar
  114. Timmer M, Müller-Ostermeyer F, Kloth V et al (2004) Enhanced survival, reinnervation, and functional recovery of intrastriatal dopamine grafts co-transplanted with Schwann cells overexpressing high molecular weight FGF-2 isoforms. Exp Neurol 187(1):118–136PubMedGoogle Scholar
  115. Tomac A, Widenfalk J, Lin LF et al (1995) Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult. Proc Natl Acad Sci USA 92(18):8274–8278PubMedGoogle Scholar
  116. Vernay B, Koch M, Vaccarino F et al (2005) Otx2 regulates subtype specification and neurogenesis in the midbrain. J Neurosci 25(19):4856–4867PubMedGoogle Scholar
  117. Verney C, Zecevic N, Ezan P (2001) Expression of calbindin D28K in the dopaminergic mesotelencephalic system in embryonic and fetal human brain. J Comp Neurol 429(1):45–58PubMedGoogle Scholar
  118. von Bohlen und Halbach O, Minichiello L, Unsicker K (2005) Haploinsufficiency for trkB and trkC receptors induces cell loss and accumulation of alpha-synuclein in the substantia nigra. FASEB J 19(12):1740–1742Google Scholar
  119. Wallén A, Zetterström RH, Solomin L et al (1999) Fate of mesencephalic AHD2-expressing dopamine progenitor cells in NURR1 mutant mice. Exp Cell Res 253(2):737–746PubMedGoogle Scholar
  120. Wallén A, Castro DS, Zetterström RH et al (2001) Orphan nuclear receptor Nurr1 is essential for Ret expression in midbrain dopamine neurons and in the brain stem. Mol Cell Neurosci 18(6):649–663Google Scholar
  121. Wassarman KM, Lewandoski M, Campbell K et al (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124(15):2923–2934PubMedGoogle Scholar
  122. Westerlund M, Galter D, Carmine A et al (2005) Tissue- and species-specific expression patterns of class I, III, and IV Adh and Aldh1 mRNAs in rodent embryos. Cell Tissue Res 322(2):227–236PubMedGoogle Scholar
  123. Wood TK, McDermott KW, Sullivan AM (2005) Differential effects of growth/differentiation factor 5 and glial cell line-derived neurotrophic factor on dopaminergic neurons and astroglia in cultures of embryonic rat midbrain. J Neurosci Res 80(6): 759–766PubMedGoogle Scholar
  124. Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120(7): 2065–2075PubMedGoogle Scholar
  125. Yurek DM, Zhang L, Fletcher-Turner A et al (2004) Supranigral injection of neuregulin1-beta induces striatal dopamine overflow. Brain Res 1028(1):116–119PubMedGoogle Scholar
  126. Zetterström RH, Solomin L, Jansson L et al (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276(5310):248–250PubMedGoogle Scholar
  127. Zhou C, Xiao C, Commissiong JW et al (2006) Mesencephalic astrocyte-derived neurotrophic factor enhances nigral gamma-aminobutyric acid release. Neuroreport 17(3):293–297PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien Printed in Germany 2009

Authors and Affiliations

  1. 1.Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and PharmacologyUniversity Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations