Logics of Similarity and their Dual Tableaux A Survey

  • Joanna Golińska-Pilarek
  • Ewa Orłowska
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 504)

Abstract

We present several classes of logics for reasoning with information stored in information systems. The logics enable us to cope with the phenomena of incompleteness of information and uncertainty of knowledge derived from such an information. Relational inference systems for these logics are developed in the style of dual tableaux.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BAL01] Ph. Balbiani, Emptiness relations in property systems, Lecture Notes in Computer Science 2561, Springer (2001), 15–34.Google Scholar
  2. [BGO06] D. Bresolin, J. Golińska-Pilarek, and E. Orłowska, Relational dual tableaux for interval temporal logics, Journal of Applied Non-Classical Logics Vol. 16, No. 3–4 (2006), 251–277.CrossRefMathSciNetGoogle Scholar
  3. [BUR06] A. Burrieza, M. Ojeda-Aciego, and E. Orłowska, Relational approach to order of magnitude reasoning, Lecture Notes in Artificial Intelligence 4342 (2006), 105–124.Google Scholar
  4. [DAL05] J. Dallien and W. MacCaull, RelDT: A relational dual tableaux automated theorem prover, Preprint, 2005.Google Scholar
  5. [DEM96] S. Demri and E. Orłowska, Logical analysis of demonic nondeterministic programs, Theoretical Computer Science 166, 1996, 173–202.MATHCrossRefMathSciNetGoogle Scholar
  6. [DEM00] S. Demri, The nondeterministic information logic NIL is PSPACE-complete, Fundamenta Informaticae 42 No. 3–4 (2000), 211–234.MATHMathSciNetGoogle Scholar
  7. [DEG00] S. Demri and D. Gabbay, On modal logics characterized by models with relative accessibility relations: Part I., Studia Logica 65, No 3 (2000), 323–353.MATHCrossRefMathSciNetGoogle Scholar
  8. [DEO02] S. Demri and E. Orłowska, Incomplete Information: Structure, inference, complexity, in: EATCS Monographs in Theoretical Computer Science, Springer (2002).Google Scholar
  9. [DES02] S. Demri and U. Sattler, Automata-theoretic decision procedures for information logics, Fundamenta Informaticae 53, No 1 (2002), 1–22.MATHMathSciNetGoogle Scholar
  10. [DEO07] S. Demri and E. Orłowska, Relative nondeterministic information logic is EXPTIME-complete, Fundamenta Informaticae 75, No 1 (2007), to appear.Google Scholar
  11. [DID87] E. Diday, Introduction a l’approche symbolique en analyse des donnees, in: Actes des journees symboliques numeriques pour l’apprentissage de connaissances a partir des donnes, Paris (1987).Google Scholar
  12. [DID88] E. Diday and L. Roy, Generating rules by symbolic data analysis and application to soil feature recognition, in: Actes des Semes Journees Internationales: Les systemes experts et leurs applications, Avignon (1988).Google Scholar
  13. [FOR05] A. Formisano, E. Omodeo, and E. Orłowska, A PROLOG tool for relational translation of modal logics: A front-end for relational proof systems, in: B. Beckert (ed) TABLEAUX 2005 Position Papers and Tutorial Descriptions, Universität Koblenz-Landau, Fachberichte Informatik No 12, 2005, 1–10.Google Scholar
  14. [FOR06] A. Formisano, M. Nicolosi Asmundo, An efficient relational deductive system for propositional non-classical logics, Journal of Applied Non-Classical Logics 16, No. 3–4 (2006), 367–408.CrossRefMathSciNetGoogle Scholar
  15. [FOO06] A. Formisano, E. Omodeo, and E. Orłowska, An environment for specifying properties of dyadic relations and reasoning about them. II: Relational presentation of non-classical logics. Lecture Notes in Artificial Intelligence 4342 (2006), 89–104.Google Scholar
  16. [FRI95] M. Frias and E. Orłowska, A proof system for fork algebras and its applications to reasoning in logics based on intuitionism, Logique et Analyse 150-151-152, 1995, 239–284.Google Scholar
  17. [GOL07] J. Golińska-Pilarek and E. Orłowska, Tableaux and dual Tableaux: Transformation of proofs, Studia Logica 85 (2007), 291–310.Google Scholar
  18. [GOO06] J. Golińska-Pilarek and E. Orłowska, Relational proof systems for spatial reasoning, Journal of Applied Non-Classical Logics Vol. 16, No. 3–4 (2006), 409–431.MathSciNetGoogle Scholar
  19. [KON87] B. Konikowska, A formal language for reasoning about indiscernibility, Bulletin of the Polish Academy of Sciences, Math. 35 (1987), 239–249.MATHMathSciNetGoogle Scholar
  20. [KON94] B. Konikowska, A logic for reasoning about similarity, in: H. Rasiowa and E. Orłowska (Eds.), Reasoning with incomplete information, Vol. 58 of Studia Logica (1994), 185–226.Google Scholar
  21. [KON98] B. Konikowska, Ch. Morgan, and E. Orłowska, A relational formalisation of arbitrary finite-valued logics, Logic Journal of IGPL 6 No. 5, 1998, 755–774.MATHCrossRefGoogle Scholar
  22. [LIP76] W. Lipski, Informational systems with incomplete information, Proceedings of the 3rd International Symposium on Automata, Languages and Programming, Edinburgh, Scotland (1976), 120–130.Google Scholar
  23. [LIP79] W. Lipski, On semantic issues connected with incomplete information databases, ACM Transactions on Database Systems, 4, No. 3 (1979), 262–296.CrossRefGoogle Scholar
  24. [MAC97] W. MacCaull, Relational proof theory for linear and other substructural logics, Logic Journal of IGPL 5, 1997, 673–697.MATHCrossRefMathSciNetGoogle Scholar
  25. [MAC98a] W. MacCaull, Relational tableaux for tree models, language models and information networks, in: E. Orłowska (ed) Logic at Work. Essays dedicated to the memory of Helena Rasiowa, Springer-Physica Verlag, Heidelberg, 1998a.Google Scholar
  26. [MAC98b] W. MacCaull, Relational semantics and a relational proof system for full Lambek Calculus, Journal of Symbolic Logic 63, 2, 1998b, 623–637.MATHCrossRefMathSciNetGoogle Scholar
  27. [MAC02] W. MacCaull and E. Orłowska, Correspandence results for relational proof systems with applications to the Lambek calculus, Studia Logica 71, 2002, 279–304.CrossRefGoogle Scholar
  28. [MAC06] W. MacCaull and E. Orłowska, A logic of typed relations and its applications to relational databases, Journal of Logic and Computation 16, No. 6 (2006), 789–815.MATHCrossRefMathSciNetGoogle Scholar
  29. [ORL82] E. Orłowska, Semantics of vague concepts, ICS PAS Reports 469 (1982), 20 pp.Google Scholar
  30. [ORL83] E. Orłowska, Semantics of vague concepts, in: G. Dorn and P. Weingartner (eds), Foundations of Logic and Linguistics. Problems and Solutions, Selected contributions to the 7th International Congress of Logic, Methodology and Philosophy of Science, Salzburg (1983), Plenum Press, London/New York, 465–482.Google Scholar
  31. [ORL84a] E. Orłowska, Logic of indiscernibility relations, Lecture Notes in Computer Science 208, Springer (1984), 177–186.Google Scholar
  32. [ORL84b] E. Orłowska and Z. Pawlak, Representation of Nondeterministic Information, Theoretical Computer Science 29 (1984), 27–39.CrossRefMathSciNetGoogle Scholar
  33. [ORL85] E. Orłowska, Logic of nondeterministic information, Studia Logica 44 (1985), 93–102.Google Scholar
  34. [ORL88a] E. Orłowska, Kripke models with relative accessibility and their application to inferences from incomplete information, in: G. Mirkowska and H. Rasiowa (eds.), Mathematical Problems in Computation Theory, Banach Center Publications 21 (1988), 329–339.Google Scholar
  35. [ORL88] E. Orłowska, Relational interpretation of modal logics, in: Andreka, H., Monk, D., and Nemeti, I. (eds) Algebraic Logic, Colloquia Mathematica Societatis Janos Bolyai 54, North Holland, Amsterdam, 1988, 443–471.Google Scholar
  36. [ORL92] E. Orłowska, Relational proof systems for relevant logics, Journal of Symbolic Logic 57, 1992, 1425–1440.MATHCrossRefMathSciNetGoogle Scholar
  37. [ORL93] E. Orłowska, Dynamic logic with program specifications and its relational proof system, Journal of Applied Non-Classical Logic 3, 1993, 147–171.MATHGoogle Scholar
  38. [ORL94] E. Orłowska, Relational semantics for non-classical logics: Formulas are relations, in: Woleński, J. (ed) Philosophical Logic in Poland, Kluwer, 1994, 167–186.Google Scholar
  39. [ORL95] E. Orłowska, Temporal logics in a relational framework, in: Bolc, L. and Szałas, A. (eds) Time and Logic-a Computational Approach, University College London Press, 1995, 249–277.Google Scholar
  40. [ORL97b] E. Orlowska (ed), Incomplete Information: Rough Set Analysis, Physica Verlag, Heidelberg (1997).Google Scholar
  41. [ORG07] E. Orłowska, and J. Golińska-Pilarek, Dual Tableaux and their Applications, A draft of the book, 2007.Google Scholar
  42. [PAW91] Z. Pawlak, Rough Sets, Kluwer, Dordrecht (1991).MATHGoogle Scholar
  43. [PRE97] S. Prediger, Symbolic objects in formal concept analysis, Preprint Nr. 1923, Technische Hohschule Darmstadt, Fachbereich Mathematik (1997).Google Scholar
  44. [RSK91] C. Rauszer and A. Skowron, The discernibility matrices and functions in information systems, in: R. Słowiński (ed), Intelligent decision support. Handbook of Applications and Advances in the Rough Set Theory, Kluwer, Dordrecht (1991), 331–362.Google Scholar
  45. [TAR41] A. Tarski, On the calculus of relations, The Journal of Symbolic Logic 6 (1941), 73–89.MATHCrossRefMathSciNetGoogle Scholar
  46. [TAR87] A. Tarski and S. R. Givant, A Formalization of Set Theory without Variables, Colloquium Publications, vol. 41, American Mathematical Society, 1987.Google Scholar
  47. [VAK87] D. Vakarelov, Abstract characterization of some knowledge representation systems and the logic NIL of nondeterministic information, in: Ph. Jorrand and V. Sgurev (eds.), Artificial Intelligence: Methodology, Systems, Applications, North-Holland, Amsterdam (1987), 255–260.Google Scholar
  48. [VAK89] D. Vakarelov, Modal logies for knowledge representation systems, in: A. R. Meyer and M. Taitslin (eds.), Symposuim on Logic Foundations of Computer Science, Pereslavl-Zalessky, Lecture Notes in Computer Science, Vol. 363, Springer, Berlin (1989), 257–277.Google Scholar
  49. [VAK91a] D. Vakarelov, Logical analysis of positive and negative similarity relations in property systems, in: M. de Glas and D. Gabbay (eds.), First World Conference on the Fundamentals of Artificial Intelligence, Paris, France (1991).Google Scholar
  50. [VAK91b] D. Vakarelov, A modal logic for similarity relations in Pawlak knowledge representation systems, Fundamenta. Informaticae 15 (1991), 61–79.MATHMathSciNetGoogle Scholar
  51. [WAN98] H. Wang, I. Düntsch and D. Bell, Data reduction based on hyper relations, in: R. Agrawal, P. Stolorz and G. Piatetsky-Shapiro (Eds), Proceedings of KDD98 (1998), 349–353.Google Scholar
  52. [WAN00] H. Wang, I. Düntsch and G. Gediga, Classificatory filtering in decision systems, International Journal of Approximate Reasoning 23 (2000), 111–136.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© CISM, Udine 2008

Authors and Affiliations

  • Joanna Golińska-Pilarek
    • 1
    • 2
  • Ewa Orłowska
    • 2
  1. 1.Institute of PhilosophyWarsaw UniversityPoland
  2. 2.National Institute of TelecommunicationsWarsawPoland

Personalised recommendations