Advertisement

Damage Identification using Inverse Methods

  • Michael I. Friswell
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 499)

Abstract

This chapter gives an overview of the use of inverse methods in damage detection and location, using measured vibration data. Inverse problems require the use of a model and the identification of uncertain parameters of this model. Damage is often local in nature and although the effect of the loss of stiffness may require only a small number of parameters, the lack of knowledge of the location means that a large number of candidate parameters must be included. This leads to potential ill-conditioning problems, and this topic is reviewed in this chapter. This chapter then goes on to discuss a number of problems that exist with the inverse approach to structural health monitoring, including modelling errors, environmental effects, damage localisation, regularisation, models of damage and sensor validation.

Keywords

Mode Shape Damage Detection Structural Health Monitoring Inverse Method Subset Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. M. O. Abdalla, K. M. Grigoriadis, and D. C. Zimmerman. Enhanced structural damage detection using alternating projection methods. AIAA Journal, 36:1305–1311, 1998.CrossRefGoogle Scholar
  2. M. O. Abdalla, K. M. Grigoriadis, and D. C. Zimmerman. Structural damage detection using linear matrix inequality methods. Journal of Vibration and Acoustics, 122: 448–455, 2000.CrossRefGoogle Scholar
  3. M. Abdelghani and M. I. Friswell. A parity space approach to sensor validation. In Proceedings of the 19th International Modal Analysis Conference, pages 405–411, Orlando, Florida, 2001.Google Scholar
  4. M. Abdelghani, C. T. Chou, and M. Verhaegen. Using subspace methods in the identification and modal analysis of structures. In Proceedings of the 15th International Modal Analysis Conference, pages 1392–1398, Orlando, Florida, 1997.Google Scholar
  5. M. Abdelghani, M. Goursat, T. Biolchini, L. Hermans, and H. van der Auweraer. Performance of output-only identification algorithms for modal analysis of aircraft structures. In Proceedings of the 17th International Modal Analysis Conference, pages 224–230, Kissimmee, Florida, 1999.Google Scholar
  6. D. E. Adams and M. Nataraju. A nonlinear dynamical systems framework for structural diagnosis and prognosis. International Journal of Engineering Science, 40:1919–1941, 2002.CrossRefGoogle Scholar
  7. S. Adhikari and M. I. Friswell. Eigenderivative analysis of asymmetric non-conservative systems. International Journal for Numerical Methods in Engineering, 51:709–733, 2001.MATHCrossRefGoogle Scholar
  8. H. Ahmadian, J. E. Mottershead, and M. I. Friswell. Regularisation methods for finite element model updating. Mechanical Systems and Signal Processing, 12:47–64, 1998.CrossRefGoogle Scholar
  9. K. J. Atherton, C. A. Paget, and E. W. O’Brien. Structural health monitoring of metal aircraft structures with modified acoustic emission. In Proceedings of SEM X International Conference on Experimental and Applied Mechanics, California, USA, 2004.Google Scholar
  10. E. Balmes. Structural Dynamics Toolbox: For use with MATLAB. Users Guide, Version 4, 2000.Google Scholar
  11. T. Belytschko, Y. Y. Lu, and L. Gu. Crack propagation by element-free Galerkin methods. Engineering Fracture Mechanics, 51:295–315, 1995.CrossRefGoogle Scholar
  12. J. A. Brandon. Some insights into the dynamics of defective structures. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 212:441–454, 1998.CrossRefGoogle Scholar
  13. S. H. S. Carneiro and D. J. Inman. Comments on the free vibrations of beams with a single-edge crack. Journal of Sound and Vibration, 244:729–736, 2001.CrossRefGoogle Scholar
  14. S. H. S. Carneiro and D. J. Inman. Continuous model for the transverse vibration of cracked Timoshenko beams. Journal of Vibration and Acoustics, 124:310–320, 2002.CrossRefGoogle Scholar
  15. P. Cawley and R. D. Adams. The location of defects in structures from measurements of natural frequencies. Journal of Strain Analysis, 14:49–57, 1979.CrossRefGoogle Scholar
  16. P. Cawley, R. D. Adams, C. J. Pye, and B. J. Stone. A vibration technique for non-destructively assessing the integrity of structures. Journal of Mechanical Engineering Science, 20:93–100, 1978.CrossRefGoogle Scholar
  17. S. Christides and A. D. S. Barr. One dimensional theory of cracked Bernoulli-Euler beams. International Journal of Mechanical Science, 26:639–648, 1984.CrossRefGoogle Scholar
  18. A. D. Dimarogonas. Vibration of cracked structures: a state of the art review. Engineering Fracture Mechanics, 55:831–857, 1996.CrossRefGoogle Scholar
  19. S. W. Doebling. Minimum-rank optimal update of elemental stiffness parameters for structural damage identification. AIAA Journal, 34:2615–2621, 1996.MATHCrossRefGoogle Scholar
  20. S. W. Doebling, C. R. Farrar, and M. B. Prime. A summary review of vibration-based damage identification methods. Shock and Vibration Digest, 30:91–105, 1998.CrossRefGoogle Scholar
  21. J. V. A. dos Santos, C. M. M. Soares, C. A. M. Soares, and N. M. M. Maia. Structural damage identification in laminated structures using FRF data. Comoposite Structures, 67:239–249, 2005.CrossRefGoogle Scholar
  22. R. Dunia and S. J. Qin. Subspace approach to multidimensional fault identification and reconstruction. AIChE Journal, 44:1813–1831, 1998.CrossRefGoogle Scholar
  23. R. Dunia, S. J. Qin, T. F. Edgar, and T. J. McAvoy. Identification of faulty sensors using principal component analysis. AIChE Journal, 42:2797–2812, 1996.CrossRefGoogle Scholar
  24. C. R. Farrar and D. A. Jauregui. Comparative study of damage identification algorithms applied to a bridge: I. experiment. Smart Materials and Structures, 7:704–719, 1998a.CrossRefGoogle Scholar
  25. C. R. Farrar and D. A. Jauregui. Comparative study of damage identification algorithms applied to a bridge: II. numerical study. Smart Materials and Structures, 7:720–731, 1998b.CrossRefGoogle Scholar
  26. M. I. Friswell. Damage identification using inverse methods. Special Issue of the Royal Society Philosophical Transactions on Structural Health Monitoring and Damage Prognosis, 365:393–410, 2007.Google Scholar
  27. M. I. Friswell and D. J. Inman. Sensor validation for smart structures. Journal of Intelligent Material Systems and Structures, 10:973–982, 1999.CrossRefGoogle Scholar
  28. M. I. Friswell and J. E. Mottershead. Finite Element Model Updating in Structural Dynamics. Kluwer Academic Publishers, 1995.Google Scholar
  29. M. I. Friswell and J. E. T. Penny. Crack modelling for structural health monitoring. Structural Health Monitoring: An International Journal, 1:139–148, 2002.CrossRefGoogle Scholar
  30. M. I. Friswell, J. E. T. Penny, and D. A. Wilson. Using vibration data and statistical measures to locate damage in structures. Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis, 9:239–254, 1994.Google Scholar
  31. M. I. Friswell, J. E. T. Penny, and S. D. Garvey. Parameter subset selection in damage location. Inverse Problems in Engineering, 5:189–215, 1997.CrossRefGoogle Scholar
  32. M. I. Friswell, J. E. Mottershead, and H. Ahmadian. Finite element model updating using experimental test data: parameterisation and regularisation. Transactions of the Royal Society of London, Series A, 359:169–186, 2001.MATHCrossRefGoogle Scholar
  33. C. P. Fritzen, D. Jennewein, and T. Kiefer. Damage detection based on model updating methods. Mechanical Systems and Signal Processing, 12:163–186, 1998.CrossRefGoogle Scholar
  34. G. M. L. Gladwell and H. Ahmadian. Generic element matrices suitable for finite element model updating. Mechanical Systems and Signal Processing, 9:601–614, 1995.CrossRefGoogle Scholar
  35. G.H. Golub and C. F. van Loan. Matrix Computations. The John Hopkins University Press, 1996.Google Scholar
  36. P. C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 34:561–580, 1992.MATHCrossRefMathSciNetGoogle Scholar
  37. P. C. Hansen. Regularisation tools: a MATLAB package for analysis and solution of discrete ill-posed problems. Numerical Algorithms, 6:1–35, 1994.MATHCrossRefMathSciNetGoogle Scholar
  38. F. M. Hemez and C. Farhat. Bypassing the numerical difficulties associated with the updating of finite element matrices. AIAA Journal, 33:539–546, 1995.CrossRefGoogle Scholar
  39. K. M. Holford, A. W. Davies, R. Pullin, and D. C. Carter. Damage location in steel bridges by acoustic emission. Journal of Intelligent Material Systems and Structures, 12:567–576, 2001.CrossRefGoogle Scholar
  40. T. J. Johnson, R. L. Brown, D. E. Adams, and M. Schiefer. Distributed structural health monitoring with a smart sensor array. Mechanical Systems and Signal Processing, 18:555–572, 2004.CrossRefGoogle Scholar
  41. A. M. Kabé. Stiffness matrix adjustment using modal data. AIAA Journal, 23:1431–1436, 1985.CrossRefGoogle Scholar
  42. T. Y. Kam and T. Y. Lee. Detection of cracks in structures using modal test datas. Engineering Fracture Mechanics, 42:381–387, 1992.CrossRefGoogle Scholar
  43. M. Kaouk and D. C. Zimmerman. Structural damage assessment using a generalised minimum rank perturbation theory. AIAA Journal, 32:836–842, 1994.MATHCrossRefGoogle Scholar
  44. R. Kenigsbuch and Y. Halevi. Model updating in structural dynamics: A generalised reference basis approach. Mechanical Systems and Signal Processing, 12:75–90, 1998.CrossRefGoogle Scholar
  45. G. Kerschen, J. C. Golinval, and F. M. Hemez. Bayesian model screening for the identification of nonlinear mechanical structures. Journal of Vibration and Acoustics, 125: 389–397, 2003.CrossRefGoogle Scholar
  46. M. Kisa and J. A. Brandon. The effects of closure of cracks on the dynamics of a cracked cantilever beam. Journal of Sound and Vibration, 238:1–18, 2000.CrossRefGoogle Scholar
  47. A. V. Knyazev and M. E. Argentati. Principal angles between subspaces in an A-based scalar product: algorithms and perturbation estimates. SIAM Journal on Scientific Computing, 23:2008–2040, 2002.MATHCrossRefMathSciNetGoogle Scholar
  48. S. S. Law, T. H. T. Chan, and D. Wu. Efficient numerical model for the damage detection of a large scale complex structure. Engineering Structures, 23:436–451, 2001.CrossRefGoogle Scholar
  49. Y.-S. Lee and M.-J. Chung. A study on crack detection using eigenfrequency test data. Computers and Structures, 77:327–342, 2001.CrossRefGoogle Scholar
  50. N. A. J. Lieven. Spatial correlation of mode shapes, the coordinate modal assurance criterion. In Proceedings of the 6th IMAC, pages 690–695, 1988.Google Scholar
  51. M. Link and M. I. Friswell. Working group 1. generation of validated structural dynamic models-results of a benchmark study utilising the GARTEUR SM-AG19 testbed. Mechanical Systems and Signal Processing, COST Action Special Issue, 17:9–20, 2003.Google Scholar
  52. H. Luo and S. Hanagud. Delamination detection using dynamic characteristics of composite plates. In Proceedings of the AIAA/ASME/ASCE/AHS Structures, Structural Dynamics & Materials Conference,, pages 129–139, California, USA, 1995.Google Scholar
  53. P. M. Majumdar and S. Suryanarayan. Flexural vibrations of beams with delaminations. Journal of Sound and Vibration, 125:441–461, 1988.CrossRefGoogle Scholar
  54. I. W. Mayes and W. G. R. Davies. Analysis of the response of a multi-rotor-bearing system containing a transverse crack in a rotor. Journal of Vibration, Acoustics, Stress and Reliability in Design, 106:139–145, 1984.Google Scholar
  55. S. Meyer and M. Link. Modelling and updating of local non-linearities using frequency response residuals. Mechanical Systems and Signal Processing, 17:219–226, 2003.CrossRefGoogle Scholar
  56. T. Mickens, M. Schulz, M. Sundaresan, A. Ghoshal, A. S. Naser, and R. Reichmeider. Structural health monitoring of an aircraft joint. Mechanical Systems and Signal Processing, 17:285–303, 2003.CrossRefGoogle Scholar
  57. A. J. Millar. Subset Selection in Regression. Monographs on Statistics and Applied Probability 40, Chapman and Hall, 1990.Google Scholar
  58. J. E. Mottershead and M. I. Friswell. Model updating in structural dynamics: a survey. Journal of Sound and Vibration, 167:347–375, 1993.MATHCrossRefGoogle Scholar
  59. J. E. Mottershead, M. I. Friswell, and C. Mares. A method for determining model-structure errors and for locating damage in vibrating systems. Meccanica, 34:153–166, 1999.CrossRefGoogle Scholar
  60. S. A. Neild, M. S. Williams, and P. D. McFadden. Nonlinear vibration characteristics of damaged concrete beams. Journal of Structural Engineering, 129:260–268, 2003.CrossRefGoogle Scholar
  61. J. M. Nichols, M. D. Todd, and J. R. Wait. Using state space predictive modeling with chaotic interrogation in detecting joint preload loss in a frame structure. Smart Materials & Structures, 12:580–601, 2003a.CrossRefGoogle Scholar
  62. J. M. Nichols, L. N. Virgin, M. D. Todd, and J. D. Nichols. On the use of attrator dimension as a feature in structural health monitoring. Mechanical Systems and Signal Processing, 17:1305–1320, 2003b.CrossRefGoogle Scholar
  63. J. C. O’Callahan, P. Avitabile, and R. Riemer. System equivalent reduction expansion process (SEREP). In Proceedings of the 7th International Modal Analysis Conference, Las Vegas, pages 29–37, 1989.Google Scholar
  64. K. Ono. Fatigue Crack Measurement: Techniques and Applications, chapter Acoustic emission, pages 173–205. Engineering Materials Advisory Service Ltd., 1991.Google Scholar
  65. W. Ostachowicz and M. Krawczuk. On modelling of structural stiffness loss due to damage. In DAMAS 2001: 4th International Conference on Damage Assessment of Structures, Cardiff, UK, pages 185–199, 2001.Google Scholar
  66. A. K. Pandey and M. Biswas. Damage detection in structures using changes in flexibility. Journal of Sound and Vibration, 169:3–17, 1994.MATHCrossRefGoogle Scholar
  67. A. K. Pandey, M. Biswas, and M. M. Samman. Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 145:321–332, 1991.CrossRefGoogle Scholar
  68. A. Paolozzi and I. Peroni. Detection of debonding damage in a composite plate through natural frequency variations. Journal of Reinforced Plastics and Composites, 9:369–389, 1990.CrossRefGoogle Scholar
  69. G. Park, H. Cudney, and D. J. Inman. Impedance-based health monitoring of civil structural components. ASCE Journal of Infrastructure Systems, 6:153–160, 2000.CrossRefGoogle Scholar
  70. G. Park, H. Cudney, and D. J. Inman. Feasibility of using impedance-based damage assessment for pipeline systems. Journal of Earthquake Engineering & Structural Dynamics, 30:1463–1474, 2001.CrossRefGoogle Scholar
  71. E. Parloo, P. Guillaume, and M. van Overmeire. Damage assessment using mode shape sensitivities. Mechanical Systems and Signal Processing, 17:499–518, 2003.CrossRefGoogle Scholar
  72. B. Peeters and G. de Roeck. One-year monitoring of the Z24-bridge: enviromental effects versus damage events. Earthquake Engineering & Structural Dynamics, 30:149–171, 2001.CrossRefGoogle Scholar
  73. B. N. Rao and S. Rahman. A coupled meshless — finite element method for fracture analysis of cracks. International Journal of Pressure Vessels and Piping, 78:647–657, 2001.CrossRefGoogle Scholar
  74. P. F. Rizos, N. Aspragathos, and A. D. Dimarogonas. Identification of crack location and magnitude in a cantilever beam from the vibration modes. Journal of Sound and. Vibration, 138:381–388, 1990.CrossRefGoogle Scholar
  75. L. M. Rogers. Structural and Engineering Monitoring by Acoustic Emission Methods Fundamentals and Applications. Technical Report, Lloyds Register of Shipping, London, England, 2001.Google Scholar
  76. A. Rytter. Vibration Based Inspection of Civil Engineering Structures. PhD Dissertation, Aalborg University, Denmark, 1993.Google Scholar
  77. M. J. Schulz, M. J. Pai, and D. J. Inman. Health monitoring and active control of composite structures using piezoceramic patches. Composites Part B: Engineering, 30:713–725, 1999.CrossRefGoogle Scholar
  78. C. B. Scruby and D. J. Buttle. Fatigue Crack Measurement: Techniques and Applications, chapter Quantitative fatigue crack measurement by acoustic emission, pages 207–287. Engineering Materials Advisory Service Ltd., 1991.Google Scholar
  79. M.-H. H. Shen. Structronic Systems: Smart Structures, Devices, And Systems, Vol. 1: Smart Materials and Structures, chapter On-line structural damage detection, pages 271–332. World Scientific, 1998.Google Scholar
  80. M.-H. H. Shen and C. Pierre. Free vibration of beams with a single-edge crack. Journal of Sound and Vibration, 170:237–259, 1994.MATHCrossRefGoogle Scholar
  81. J. K. Sinha, M. I. Friswell, and S. Edwards. Simplified models for the location of cracks in beam structures using measured vibration data. Journal of Sound and Vibration, 251:13–38, 2002.CrossRefGoogle Scholar
  82. H. Sohn, M. Dzwonczyk, E. G. Straser, A.S. Kiremidjian, K. H. Law, and T. Meng. An experimental study of temperature effects on modal parameters of the Alamosa Canyon bridge. Earthquake Engineering & Structural Dynamics, 28:879–897, 1999.CrossRefGoogle Scholar
  83. H. Sohn, C. R. Farrar, N. F. Hunter, and K. Worden. Structural health monitoring using statistical pattern recognition techniques. Journal of Dynamic Systems Measurement and Control, 123:706–711, 2001.CrossRefGoogle Scholar
  84. H. Sohn, K. Worden, and C. R. Farrar. Statistical damage classification under changing environmental and operational conditions. Journal of Intelligent Material Systems and Structures, 13:561–574, 2002.CrossRefGoogle Scholar
  85. N. Stubbs, J.-T. Kim, and K. G. Topole. An efficient and robust algorithm for damage localization in offshore platforms. In Proceedings of the ASCE 10th Structures Congress, pages 543–546, 1992.Google Scholar
  86. H. Tada, P. Paris, and G. Irwin. The Stress Analysis of Cracks Handbook. Del Research Corporation, 1973.Google Scholar
  87. A. Teughels and G. De Roeck. Structural damage identification of the highway bridge Z24 by FE model updating. Journal of Sound and Vibration, 278:589–610, 2004.CrossRefGoogle Scholar
  88. A. Teughels, J. Maeck, and G. De Roeck. Damage assessment by FE model updating using damage functions. Computers and Structures, 80:1869–1879, 2002.CrossRefGoogle Scholar
  89. B. Titurus, M. I. Friswell, and L. Starek. Damage detection using generic elements: part I, model updating. Computers and Structures, 81:2273–2286, 2003a.CrossRefGoogle Scholar
  90. B. Titurus, M. I. Friswell, and L. Starek. Damage detection using generic elements: part II, damage detection. Computers and Structures, 81:2287–2299, 2003b.CrossRefGoogle Scholar
  91. J. J. Tracy and G. C. Pardoen. Effect of delamination on the natural frequencies of composite laminates. Journal of Composite Materials, 23:1200–1215, 1989.CrossRefGoogle Scholar
  92. I. Trendafilova and W. Heylen. Categorisation and pattern recognition methods for damage localisation from vibration measurements. Mechanical Systems and Signal Processing, 17:825–836, 2003.CrossRefGoogle Scholar
  93. D. Wang, M. I. Friswell, P.E. Nikravesh, and E. Y. Kuo. Damage detection in structural joints using generic joint elements. In Proceedings of the 17th International Modal Analysis Conference (IMAC), pages 792–798, Orlando, Florida, 1999.Google Scholar
  94. M. G. Wood. Damage Analysis of Bridge Structures using Vibrational Techniques. PhD Thesis, Aston University, UK, 1992.Google Scholar
  95. K. Worden. Structural fault detection using a novelty measure. Journal of Sound and Vibration, 201:85–101, 1997.CrossRefMathSciNetGoogle Scholar
  96. K. Worden, G. Manson, and N. R. J. Fieller. Damage detection using outlier analysis. Journal of Sound and Vibration, 229:647–667, 2000.CrossRefGoogle Scholar
  97. L. M. Zhang, Q. Wu, and M. Link. A structural damage identification approach based on element modal strain energy. In Proceedings of ISMA23, pages 107–114, Leuven, Belgium, 1998.Google Scholar
  98. Q. W. Zhang, L. C. Fan, and W. C. Yuan. Traffic induced variability in dynamic properties of cable-stayed bridge. Earthquake Engineering & Structural Dynamics, 31: 2015–2021, 2002.CrossRefGoogle Scholar
  99. D. C. Zimmerman and M. Kaouk. Structural damage detection using a minimum rank update theory. Journal of Vibration and Acoustics, 116:222–230, 1994.CrossRefGoogle Scholar
  100. D. C. Zimmerman, M. Kaouk, and T. Simmermacher. On the role of engineering insight and judgement in structural damage detection. In Proceedings of the 13th International Modal Analysis Conference (IMAC), pages 414–420, Nashville, TN, 1995.Google Scholar
  101. Y. Zou, L. Tong, and G. P. Steven. Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures — a review. Journal of Sound and Vibration, 230:357–378, 2000.CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2008

Authors and Affiliations

  • Michael I. Friswell
    • 1
  1. 1.Department of Aerospace EngineeringUniversity of BristolBristolUK

Personalised recommendations