Transgenic rodent models of Parkinson’s disease

  • B. K. Harvey
  • Y. Wang
  • Barry J. Hoffer
Part of the Acta Neurochirurgica Supplementum book series (NEUROCHIRURGICA, volume 101)

Abstract

In the case of Parkinson’s disease (PD), classical animal models have utilized dopaminergic neurotoxins such as 6-hydroxydopamine (6OHDA) and 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP). More recently, human genetic linkage studies have identified several genes in familial forms of PD. Transgenic models have been made that explore the function of PD-linked genes (e.g. a-synuclein, DJ-1, LRRK2, Parkin, UCH-L1, PINK1). Recent evidence suggests mitochondrial dysfunction may play a major role in PD. Manipulation of mitochondrial respiratory genes (e.g. mitochondrial transcription factor A or TFAM) also elicits a PD phenotype in mice. Transgenic mice (MitoPark) were developed that have TFAM selectively knocked out in dopaminergic neurons. The nigral dopamine neurons of MitoPark mice show respiratory chain dysfunction, accompanied by the development of intraneuronal inclusions and eventual cell death. In early adulthood, the MitoPark mice show a slowly progressing loss of motor function that accompanies these cellular changes. The MitoPark mouse enables further study of the role of mitochondrial dysfunction in DA neurons as an important mechanism in the development of PD. Transgenic technology has allowed new insights into mechanisms of neurodegeneration for a number of neurological disorders. This paper will summarize recent studies on several transgenic models of PD.

Keywords

Parkinson’s disease DJ-1 PINK1 Parkin transgenic mitopark 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbas N, Lucking CB, Ricard S, Durr A, Bonifati V, De Michèle G, Bouley S, Vaughan JR, Gasser T, Marconi R, Broussolle E, Brefel-Courbon C, Harhangi BS, Oostra BA, Fabrizio E, Böhme GA, Pradier L, Wood NW, Filla A, Meco G, Denefle P, Agid Y, Brice A (1999) A wide variety of mutations in the Parkin gene are responsible for autosomal recessive Parkinsonism in Europe. French Parkinson’s Disease Genetics Study Group and the European Consortium on Genetic Susceptibility in Parkinson’s Disease. Hum Mol Genet 8: 567–574PubMedCrossRefGoogle Scholar
  2. 2.
    Abou-Sleiman PM, Healy DG, Quinn N, Lees AJ, Wood NW (2003) The role of pathogenic DJ-1 mutations in Parkinson’s disease. Ann Neurol 54: 283–286PubMedCrossRefGoogle Scholar
  3. 3.
    Annesi G, Savettieri G, Pugliese P, D’Amelio M, Tarantino P, Ragonese P, La Bella V, Piccoli T, Civitelli D, Annesi F, Fierro B, Piccoli F, Arabia G, Caracciolo M, Ciro Candiano IC, Quattrone A (2005) DJ-1 mutations and Parkinsonism-dementia-amyotrophic lateral sclerosis complex. Ann Neurol 58: 803–807PubMedCrossRefGoogle Scholar
  4. 4.
    Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38: 515–517PubMedCrossRefGoogle Scholar
  5. 5.
    Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset Parkinsonism. Science 299: 256–259PubMedCrossRefGoogle Scholar
  6. 6.
    Bonifati V, Rohe CF, Breedveld GJ, Fabrizio E, De Mari M, Tassorelli C, Tavella A, Marconi R, Nicholl DJ, Chien HF, Fincati E, Abbruzzese G, Marini P, De Gaetano A, Horstink MW, Maat-Kievit JA, Sampaio C, Antonini A, Stocchi F, Montagna P, Toni V, Guidi M, Dalla Libéra A, Tinazzi M, De Pandis F, Fabbrini G, Goldwurm S, de Klein A, Barbosa E, Lopiano L, Martignoni E, Lamberti P, Vanacore N, Meco G, Oostra BA (2005) Early-onset Parkinsonism associated with PINKl mutations: frequency, genotypes, and phenotypes. Neurology 65: 87–95PubMedCrossRefGoogle Scholar
  7. 7.
    Chen L, Cagniard B, Mathews T, Jones S, Koh HC, Ding Y, Carvey PM, Ling Z, Kang UJ, Zhuang X (2005) Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J Biol Chem 280: 21418–21426PubMedCrossRefGoogle Scholar
  8. 8.
    Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM (2001) Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 7: 1144–1150PubMedCrossRefGoogle Scholar
  9. 9.
    Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pinkl is required for mitochondrial function and interacts genetically with Parkin. Nature 441: 1162–1166PubMedCrossRefGoogle Scholar
  10. 10.
    Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39: 889–909PubMedCrossRefGoogle Scholar
  11. 11.
    Ekstrand MI, Terzioglu M, Gaiter D, Zhu S, Hofstetter C, Lindqvist E, Thams S, Bergstrand A, Hansson FS, Trifunovic A, Hoff er B, Cullheim S, Mohammed AH, Olson L, Larsson NG (2007) Progressive Parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA 104: 1325–1330PubMedCrossRefGoogle Scholar
  12. 12.
    Gandhi S, Muqit MM, Stanyer L, Healy DG, Abou-Sleiman PM, Hargreaves I, Heales S, Ganguly M, Parsons L, Lees AJ, Latchman DS, Holton JL, Wood NW, Revesz T (2006) PINKl protein in normal human brain and Parkinson’s disease. Brain 129: 1720–1731PubMedCrossRefGoogle Scholar
  13. 13.
    Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ, Gajendiran M, Roth BL, Chesselet MF, Maidment NT, Levine MS, Shen J (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278: 43628–43635PubMedCrossRefGoogle Scholar
  14. 14.
    Goldberg MS, Pisani A, Haburcak M, Vortherms TA, Kitada T, Costa C, Tong Y, Martella G, Tscherter A, Martins A, Bernardi G, Roth BL, Pothos EN, Calabresi P, Shen J (2005) Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 45: 489–496PubMedCrossRefGoogle Scholar
  15. 15.
    Hague S, Rogaeva E, Hernandez D, Gulick C, Singleton A, Hanson M, Johnson J, Weiser R, Gallardo M, Ravina B, Gwinn-Hardy K, Crawley A, St George-Hyslop PH, Lang AE, Heutink P, Bonifati V, Hardy J, Singleton A (2003) Early-onset Parkinson’s disease caused by a compound heterozygous DJ-1 mutation. Ann Neurol 54: 271–274PubMedCrossRefGoogle Scholar
  16. 16.
    Hatano Y, Li Y, Sato K, Asakawa S, Yamamura Y, Tomiyama H, Yoshino H, Asahina M, Kobayashi S, Hassin-Baer S, Lu CS, Ng AR, Rosales RL, Shimizu N, Toda T, Mizuno Y, Hattori N (2004) Novel PINKl mutations in early-onset Parkinsonism. Ann Neurol 56: 424–427PubMedCrossRefGoogle Scholar
  17. 17.
    Hedrich K, Djarmati A, Schafer N, Hering R, Wellenbrock C, Weiss PH, Hilker R, Vieregge P, Ozelius LJ, Heutink P, Bonifati V, Schwinger E, Lang AE, Noth J, Bressman SB, Pramstaller PP, Riess O, Klein C (2004) DJ-1 (PARK7) mutations are less frequent than Parkin (PARK2) mutations in early-onset Parkinson disease. Neurology 62: 389–394PubMedGoogle Scholar
  18. 18.
    Hedrich K, Eskelson C, Wilmot B, Marder K, Harris J, Garreis J, Meija-Santana H, Vieregge P, Jacobs H, Bressman SB, Lang AE, Kann M, Abbruzzese G, Martinelli P, Schwinger E, Ozelius LJ, Pramstaller PP, Klein C, Kramer P (2004) Distribution, type, and origin of Parkin mutations: review and case studies. Mov Disord 19: 1146–1157PubMedCrossRefGoogle Scholar
  19. 19.
    Hedrich K, Kann M, Lanthaler AJ, Dalski A, Eskelson C, Landt O, Schwinger E, Vieregge P, Lang AE, Breakefield XO, Ozelius LJ, Pramstaller PP, Klein C (2001) The importance of gene dosage studies: mutational analysis of the Parkin gene in early-onset parkinsonism. Hum Mol Genet 10: 1649–1656PubMedCrossRefGoogle Scholar
  20. 20.
    Ibanez P, Lesage S, Lohmann E, Thobois S, De Michèle G, Borg M, Agid Y, Dürr A, Brice A (2006) Mutational analysis of the PINK1 gene in early-onset Parkinsonism in Europe and North Africa. Brain 129: 686–694PubMedCrossRefGoogle Scholar
  21. 21.
    Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105: 891–902PubMedCrossRefGoogle Scholar
  22. 22.
    Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Böhme GA, Laville M, Pratt J, Corti O, Pradier L, Ret G, Joubert C, Periquet M, Araujo F, Negroni J, Casarejos MJ, Canals S, Solano R, Serrano A, Gallego E, Sanchez M, Denefle P, Benavides J, Tremp G, Rooney TA, Brice A, Garcia de Yebenes J (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 12: 2277–2291PubMedCrossRefGoogle Scholar
  23. 23.
    Kim RH, Smith PD, Aleyasin H, Hayley S, Mount MP, Pownall S, Wakeham A, You-Ten AJ, Kalia SK, Horne P, Westaway D, Lozano AM, Anisman H, Park DS, Mak TW (2005) Hypersensitivity of DJ-1-déficient mice to l-methyl-4-phenyl-l,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci USA 102: 5215–5220PubMedCrossRefGoogle Scholar
  24. 24.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the Parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 392: 605–608PubMedCrossRefGoogle Scholar
  25. 25.
    Kitada T, Pisani A, Porter DR, Yamaguchi H, Tscherter A, Martella G, Bonsi P, Zhang C, Pothos EN, Shen J (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK 1-deficient mice. Proc Natl Acad Sci USA 104: 11441–11446PubMedCrossRefGoogle Scholar
  26. 26.
    Klein C, Lohmann-Hedrich K, Rogaeva E, Schlossmacher MG, Lang AE (2007) Deciphering the role of heterozygous mutations in genes associated with Parkinsonism. Lancet Neurol 6: 652–662PubMedCrossRefGoogle Scholar
  27. 27.
    Lev N, Roncevich D, Ickowicz D, Melamed E, Offen D (2007) Role of DJ-1 in Parkinson’s disease. J Mol Neurosci 31: 307PubMedGoogle Scholar
  28. 28.
    Lucking CB, Durr A, Bonifati V, Vaughan J, De Michèle G, Gasser T, Harhangi BS, Meco G, Denefle P, Wood NW, Agid Y, Brice A (2000) Association between early-onset Parkinson’s disease and mutations in the Parkin gene. N Engl J Med 342: 1560–1567PubMedCrossRefGoogle Scholar
  29. 29.
    Oliveira SA, Scott WK, Martin ER, Nance MA, Watts RL, Hubble JP, Koller WC, Pahwa R, Stern MB, Hiner BC, Ondo WG, Allen FH Jr, Scott BL, Goetz CG, Small GW, Mastaglia F, Stajich JM, Zhang F, Booze MW, Winn MP, Middleton LT, Haines JL, Pericak-Vance MA, Vance JM (2003) Parkin mutations and susceptibility alleles in late-onset Parkinson’s disease. Ann Neurol 53: 624–629PubMedCrossRefGoogle Scholar
  30. 30.
    Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J (2004) Mitochondrial dysfunction and oxidative damage in Parkin-deficient mice. J Biol Chem 279: 18614–18622PubMedCrossRefGoogle Scholar
  31. 31.
    Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by Parkin. Nature 441: 1157–1161PubMedCrossRefGoogle Scholar
  32. 32.
    Perez FA, Curtis WR, Palmiter RD (2005) Parkin-deficient mice are not more sensitive to 6-hydroxydopamine or methamphetamine neurotoxicity. BMC Neurosci 6: 71PubMedCrossRefGoogle Scholar
  33. 33.
    Perez FA, Palmiter RD (2005) Parkin-deficient mice are not a robust model of Parkinsonism. Proc Natl Acad Sci USA 102: 2174–2179PubMedCrossRefGoogle Scholar
  34. 34.
    Periquet M, Latouche M, Lohmann E, Rawal N, De Michèle G, Ricard S, Teive H, Fraix V, Vidailhet M, Nicholl D, Barone P, Wood NW, Raskin S, Deleuze JF, Agid Y, Durr A, Brice A (2003) Parkin mutations are frequent in patients with isolated early-onset Parkinsonism. Brain 126: 1271–1278PubMedCrossRefGoogle Scholar
  35. 35.
    Rogaeva E, Johnson J, Lang AE, Gulick C, Gwinn-Hardy K, Kawarai T, Sato C, Morgan A, Werner J, Nussbaum R, Petit A, Okun MS, Mclnerney A, Mandel R, Groen JL, Fernandez HH, Postuma R, Foote KD, Salehi-Rad S, Liang Y, Reimsnider S, Tandon A, Hardy J, St George-Hyslop P, Singleton AB (2004) Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease. Arch Neurol 61: 1898–1904PubMedCrossRefGoogle Scholar
  36. 36.
    Rohe CF, Montagna P, Breedveld G, Cortelli P, Oostra BA, Bonifati V (2004) Homozygous PINK1 C-terminus mutation causing early-onset Parkinsonism. Ann Neurol 56: 427–431PubMedCrossRefGoogle Scholar
  37. 37.
    Sato S, Chiba T, Nishiyama S, Kakiuchi T, Tsukada H, Hatano T, Fukuda T, Yasoshima Y, Kai N, Kobayashi K, Mizuno Y, Tanaka K, Hattori N (2006) Decline of striatal dopamine release in Parkin-deficient mice shown by ex vivo autoradiography. J Neurosci Res 84: 1350–1357PubMedCrossRefGoogle Scholar
  38. 38.
    Shen J, Cookson MR (2004) Mitochondria and dopamine: new insights into recessive Parkinsonism. Neuron 43: 301–304PubMedCrossRefGoogle Scholar
  39. 39.
    Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, Parkin, is a ubiquitin-protein ligase. Nat Genet 25: 302–305PubMedCrossRefGoogle Scholar
  40. 40.
    Tan EK, Yew K, Chua E, Puvan K, Shen H, Lee E, Puong KY, Zhao Y, Pavanni R, Wong MC, Jamora D, de Silva D, Moe KT, Woon FP, Yuen Y, Tan L (2006) PINK1 mutations in sporadic early-onset Parkinson’s disease. Mov Disord 21: 789–793PubMedCrossRefGoogle Scholar
  41. 41.
    Tang B, Xiong H, Sun P, Zhang Y, Wang D, Hu Z, Zhu Z, Ma H, Pan Q, Xia JH, Xia K, Zhang Z (2006) Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson’s disease. Hum Mol Genet 15: 1816–1825PubMedCrossRefGoogle Scholar
  42. 42.
    Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304: 1158–1160PubMedCrossRefGoogle Scholar
  43. 43.
    Valente EM, Bentivoglio AR, Dixon PH, Ferraris A, Ialongo T, Frontali M, Albanese A, Wood NW (2001) Localization of a novel locus for autosomal recessive early-onset Parkinsonism, PARK6, on human chromosome 1p35–p36. Am J Hum Genet 68: 895–900PubMedCrossRefGoogle Scholar
  44. 44.
    van Duijn CM, Dekker MC, Bonifati V, Galjaard RJ, Houwing-Duistermaat JJ, Snijders PJ, Testers L, Breedveld GJ, Horstink M, Sandkuijl LA, van Swieten JC, Oostra BA, Heutink P (2001) Park7, a novel locus for autosomal recessive early-onset Parkinsonism, on chromosome 1p36. Am J Hum Genet 69: 629–634PubMedCrossRefGoogle Scholar
  45. 45.
    Von Coelln R, Thomas B, Savitt JM, Lim KL, Sasaki M, Hess EJ, Dawson VL, Dawson TM (2004) Loss of locus coeruleus neurons and reduced startle in Parkin null mice. Proc Natl Acad Sci USA 101: 10744–10749CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM (2000) Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA 97: 13354–13359PubMedCrossRefGoogle Scholar
  47. 47.
    Zhou H, Falkenburger BH, Schulz JB, Tieu K, Xu Z, Xia XG (2007) Silencing of the Pinkl gene expression by conditional RNAi does not induce dopaminergic neuron death in mice. Int J Biol Sci 3: 242–250PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • B. K. Harvey
    • 1
  • Y. Wang
    • 1
  • Barry J. Hoffer
    • 1
  1. 1.Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimoreUSA

Personalised recommendations