COPI: mechanisms and transport roles

  • Victor W. Hsu
  • Jia- Shu Yang
  • Stella Y. Lee

Abstract

Coat protein I (COPI) is considered one of the best characterized coat complexes, which represent the core machinery by which vesicle formation and cargo sorting are coupled to initiate vesicular transport (Bonifacino and Lippincott-Schwartz 2003; McMahon and Mills 2004). Our understanding of the molecular mechanisms by which COPI acts and the transport path- ways in which it operates has evolved significantly over the years, and with considerable accompanying controversy. These aspects of COPI research will be reviewed. See also Fig. 1 for a timeline that summarizes its key discoveries.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiken A (1996) 14-3-3 and its possible role in co-ordinating multiple signalling pathways. Trends Cell Biol 6: 341–347CrossRefGoogle Scholar
  2. Aoe T, Cukierman E, Lee A, Cassel D, Peters PJ, Hsu VW (1997) The KDEL receptor, ERD2, regulates intracellular traffic by recruiting a GTPase-activating protein for ARF1. EMBOJ 16: 7305–7316CrossRefGoogle Scholar
  3. Aoe T, Lee AJ, Van Donselaar E, Peters PJ, Hsu VW (1998) Modulation of intracellular transport by transported proteins: insight from regulation of COPI-mediated transport. Proc Natl Acad Sci USA 95: 1624–1629PubMedCrossRefGoogle Scholar
  4. Appenzeller C, Andersson H, Kappeler F, Hauri HP (1999) The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol 1: 330–334PubMedCrossRefGoogle Scholar
  5. Balch WE, Dunphy WG, Braell WA, Rothman JE (1984) Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell 39: 405–416PubMedCrossRefGoogle Scholar
  6. Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77: 895–907PubMedCrossRefGoogle Scholar
  7. Bigay J, Gounon P, Robineau S, Antonny B (2003) Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426: 563–566PubMedCrossRefGoogle Scholar
  8. Bonfanti L, Mironov AA Jr, Martinez-Menarguez JA, Martella O, Fusella A, Baldassarre M, Buccione R, Geuze HJ, Mironov AA, Luini A (1998) Procollagentraverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95: 993–1003PubMedCrossRefGoogle Scholar
  9. Bonifacino JS, Lippincott-Schwartz J (2003) Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol 4: 409–414PubMedCrossRefGoogle Scholar
  10. Bremser M, Nickel W, Schweikert M, Ravazzola M, Amherdt M, Hughes CA, Sollner TH, Rothman JE, Wieland FT (1999) Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96: 495–506PubMedCrossRefGoogle Scholar
  11. Casanova JE (2007) Regulation of arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8(11): 1476–1485PubMedCrossRefGoogle Scholar
  12. Chardin P, Paris S, Antonny B, Robineau S, Beraud-Dufour S, Jackson CL, Chabre M (1996) A human exchange factor for ARF conta ins Sec7-and pleckstrin-homology domains. Nature 384: 481–484PubMedCrossRefGoogle Scholar
  13. Chinnadurai G (2002) CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 9: 213–224PubMedCrossRefGoogle Scholar
  14. Cosson P, Amherdt M, Rothman JE, Orci L (2002) A resident Golgi protein is excluded from peri-Golgi vesicles in NRK cells. Proc Natl Acad Sci USA 99: 12831–12834PubMedCrossRefGoogle Scholar
  15. Cosson P, Demolliere C, Hennecke S, Duden R, Letourneur F (1996) Delta-and zeta-COP, two coatomersubunits homologous to clathrin-associated proteins, are involved in ER retrieval. EMBOJ 15: 1792–1798Google Scholar
  16. Cosson P, Letourneur F (1994) Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263: 1629–1631PubMedCrossRefGoogle Scholar
  17. Cukierman E, Huber I, Rotman M, Cassel D (1995) The ARF1-GTPase-Activating Protein: zinc finger motif and Golgi complex localization. Science 270: 1999–2002PubMedCrossRefGoogle Scholar
  18. D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7: 347–358PubMedCrossRefGoogle Scholar
  19. Di Girolamo M, Silletta MG, De Matteis MA, Braca A, Colanzi A, Pawlak D, Rasenick MM, Luini A, Corda D (1995) Evidence that the 50-kDa substrate of brefeldin A-dependent ADP-ribosylation binds GTP and is modulated by the G-protein beta gamma subunit complex. Proc Natl Acad Sci USA 92: 7065–7069PubMedCrossRefGoogle Scholar
  20. Dominguez M, Dejgaard K, Fullekrug J, Dahan S, Fazel A, Paccaud JP, Thomas DY, Bergeron JJ, Nilsson T (1998) gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. J Cell Biol 140: 751–765PubMedCrossRefGoogle Scholar
  21. Donaldson JG, Cassel D, Kahn RA, Klausner RD (1992a) ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc Natl Acad Sci USA 89: 6408–6412PubMedCrossRefGoogle Scholar
  22. Donaldson JG, Finazzi D, Klausner RD (1992b) Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360: 350–352PubMedCrossRefGoogle Scholar
  23. Donaldson JG, Lippincott-Schwartz J, Klausner RD (1991) Guanine nucleotides modulate the effects of brefeldin A in semipermeable cells: regulation of the association of a 110-kDa peripheral membrane protein with the Golgi apparatus. Journal of Cell Biology 112:579–588PubMedCrossRefGoogle Scholar
  24. Duden R, Griffiths G, Frank R, Argos P, Kreis TE (1991) Beta-COP, a 110 kDa protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to beta-adaptin. Cell 64: 649–665PubMedCrossRefGoogle Scholar
  25. Eugster A, Frigerio G, Dale M, Duden R (2000) COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J 19: 3905–3917PubMedCrossRefGoogle Scholar
  26. Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 155: 193–200PubMedCrossRefGoogle Scholar
  27. Franco M, Chardin P, Chabre M, Paris S (1996) Myristoylation-facilitated binding of the G protein ARF1-GDP to membrane phospholipids is required for its activation by a soluble nucleotide exchange factor. J Biol Chem 271: 1573–1578PubMedCrossRefGoogle Scholar
  28. Frank S, Upender S, Hansen SH, Casanova JE (1998a) ARNO is a guanine nucleotide exchange factor for ADP-ribosylation factor 6. J Biol Chem 273: 23–27PubMedCrossRefGoogle Scholar
  29. Frank SR, Hatfield JC, Casanova JE (1998b) Remodeling of the actin cytoskeleton is coordinately regulated by protein kinase C and the ADP-ribosylation factor nucleotide exchange factor ARNO. Mol Biol Cell 9: 3133–3146PubMedGoogle Scholar
  30. Gallop JL, Butler PJ, McMahon HT (2005) Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission. Nature 438: 675–678PubMedCrossRefGoogle Scholar
  31. Garcia-Mata R, Szul T, Alvarez C, Sztul E (2003) ADP-ribosylation factor/COPI-dependent events at the endoplasmic reticulum-Golgi interface are regulated by the guanine nucleotide exchange factor GBF1. Mol Biol Cell 14: 2250–2261PubMedCrossRefGoogle Scholar
  32. Gaynor EC, Emr SD (1997) COPI-independentanterograde transport: cargo-selective ER to Golgi protein transport in yeast COPI mutants. J Cell Biol 136: 789–802PubMedCrossRefGoogle Scholar
  33. Girod A, Storrie B, Simpson JC, Johannes L, Goud B, Roberts LM, Lord JM, Nilsson T, Pepperkok R (1999) Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat Cell Biol 1: 423–430PubMedCrossRefGoogle Scholar
  34. Goldberg J (2000) Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 100: 671–679PubMedCrossRefGoogle Scholar
  35. Guo Q, Vasile E, Krieger M (1994) Disruptions in Golgi structure and membrane traffic in a conditional lethal mammalian cell mutant are corrected by epsilon-COP. J Cell Biol 125: 1213–1224PubMedCrossRefGoogle Scholar
  36. Harrison-Lavoie KJ, Lewis VA, Hynes GM, Collison KS, Nutland E, Willison KR (1993) A 102 kDa subunit of a Golgi-associated particle has homology to beta subunits of trimeric G proteins. EMBO J 12: 2847–2853PubMedGoogle Scholar
  37. Harter C, Pavel J, Coccia F, Draken E, Wegehingel S, Tschochner H, Wieland F (1996) Nonclathrin coat protein gamma, a subunit of coatomer, binds to the cytoplasmic dilysine motif of membrane proteins of the early secretory pathway. Proc Natl Acad Sci USA 93: 1902–1906PubMedCrossRefGoogle Scholar
  38. Helms JB, Rothman JE (1992) Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360: 352–354PubMedCrossRefGoogle Scholar
  39. Hildebrand JD, Soriano P (2002) Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 22: 5296–5307PubMedCrossRefGoogle Scholar
  40. Hoffman GR, Rahl PB, Collins RN, Cerione RA (2003) Conserved structural motifs in intracellulartrafficking pathways: structure ofthegammaCOPappendage domain. Mol Cell 12:615–625PubMedCrossRefGoogle Scholar
  41. Hosobuchi M, Kreis T, Schekman R (1992) SEC21 is a gene required for ER to Golgi protein transport that encodes a subunit of a yeast coatomer. Nature 360:603–605PubMedCrossRefGoogle Scholar
  42. Inoue H, Randazzo PA (2007) Arf GAPs and their interacting proteins. Traffic 8: 1465–1475PubMedCrossRefGoogle Scholar
  43. Jahn R, Scheller RH (2006) SNAREs—engines for membranefusion. Nat Rev Mol Cell Biol 7: 631–643PubMedCrossRefGoogle Scholar
  44. Kahn RA, Gilman AG (1984) Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem 259: 6228–6234PubMedGoogle Scholar
  45. Kappeler F, Klopfenstein DR, Foguet M, Paccaud JP, Hauri HP (1997) The recycling of ERGIC-53 in the early secretory pathway. ERGIC-53 carries a cytosolic endoplasmic reticulum-exit determinant interacting with COPII. J Biol Chem 272: 31801–31808PubMedCrossRefGoogle Scholar
  46. Kawamoto K, Yoshida Y, Tamaki H, Torii S, Shinotsuka C, Yamashina S, Nakayama K (2002) GBF1, a guanine nucleotide exchange factor for ADP-ribosylation factors, is localized to the cis-Golgi and involved in membrane association of the COPI Coat. Traffic 3: 483–495PubMedCrossRefGoogle Scholar
  47. Kweon HS, Beznoussenko GV, Micaroni M, Polishchuk RS, Trucco A, Martella O, Di Giandomenico D, Marra P, Fusella A, Di Pentima A, et al (2004) Golgi enzymes are enriched in perforated zones of Golgi cisternae but are depleted in COPI vesicles. Mol Biol Cell 15:4710–4724PubMedCrossRefGoogle Scholar
  48. Lanoix J, Ouwendijk J, Lin CC, Stark A, Love HD, Ostermann J, Nilsson T (1999) GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J 18: 4935–4948PubMedCrossRefGoogle Scholar
  49. Lanoix J, Ouwendijk J, Stark A, Szafer E, Cassel D, Dejgaard K, Weiss M, Nilsson T (2001) Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1. J Cell Biol 155: 1199–1212PubMedCrossRefGoogle Scholar
  50. Lee SY, Yang JS, Hong W, Premont RT, Hsu VW (2005) ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. J Cell Biol 168: 281–290PubMedCrossRefGoogle Scholar
  51. Letourneur F, Gaynor EC, Hennecke S, Demolliere C, Duden R, Emr SD, Riezman H, Cosson P (1994) Coatomer is essential for retrieva l of d ilysine-tagged proteins to the endoplasmic reticulum. Cell 79: 1199–1207PubMedCrossRefGoogle Scholar
  52. Lewis MJ, Pelham HR (1990) A human homologue of the yeast HDEL receptor. Nature 348: 162–163PubMedCrossRefGoogle Scholar
  53. Lewis MJ, Pelham HR(1996) SNARE-mediated retrograde trafficfrom the Golgi complex to the endoplasmic reticulum. Cell 85: 205–215PubMedCrossRefGoogle Scholar
  54. Lewis MJ, Sweet DJ, Pelham HR (1990) The ERD2 gene determines the specificity of the luminal ER protein retention system. Cell 61: 1359–1363PubMedCrossRefGoogle Scholar
  55. Lippincott-Schwartz J, Donaldson JG, Schweizer A, Berger EG, Hauri HP, Yuan LC, Klausner RD (1990) Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60: 821–836PubMedCrossRefGoogle Scholar
  56. Lippincott-Schwartz J, Yuan LC, Bonifacino JS, Klausner RD (1989) Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56: 801–813PubMedCrossRefGoogle Scholar
  57. Love HD, Lin CC, Short CS, Ostermann J (1998) Isolation of functional Golgi-derived vesicles with a possible role in retrograde transport. J Cell Biol 140: 541–551PubMedCrossRefGoogle Scholar
  58. Lowe M, Kreis TE (1995) In vitro assembly and disassembly of coatomer. J Biol Chem 270: 31364–31371PubMedCrossRefGoogle Scholar
  59. Malsam J, Satoh A, Pelletier L, Warren G (2005) Golgin tethers define subpopulations of COPI vesicles. Science 307: 1095–1098PubMedCrossRefGoogle Scholar
  60. Martinez-Menarguez JA, Prekeris R, Oorschot VM, Scheller R, Slot JW, Geuze HJ, Klumperman J (2001) Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport. J Cell Biol 155: 1213–1224PubMedCrossRefGoogle Scholar
  61. McMahon HT, Mills IG (2004) COP and clathrin-coated vesicle budding: different pathways, common approaches. Curr Opin Cell Biol 16: 379–391PubMedCrossRefGoogle Scholar
  62. Michelsen K, Schmid V, Metz J, Heusser K, Liebel U, Schwede T, Spang A, Schwappach B (2007) Novel cargo-binding site in the beta and delta subunits of coatomer. J Cell Biol 179: 209–217PubMedCrossRefGoogle Scholar
  63. Mironov AA, Beznoussenko GV, Nicoziani P, Martella O, Trucco A, Kweon HS, Di Giandomenico D, Polishchuk RS, Fusella A, Lupetti P, et al (2001) Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J Cell Biol 155: 1225–1238PubMedCrossRefGoogle Scholar
  64. Moelleken J, Malsam J, Betts MJ, Movafeghi A, Reckmann I, Meissner I, Hellwig A, Russell RB, Sollner T, Brugger B, Wieland FT (2007) Differential localization of coatomer complex isoforms within the Golgi apparatus. Proc Natl Acad Sci USA 104: 4425–4430PubMedCrossRefGoogle Scholar
  65. Muniz M, Nuoffer C, Hauri HP, Riezman H (2000) The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J Cell Biol 148: 925–930PubMedCrossRefGoogle Scholar
  66. Munro S, Pelham HR (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48: 899–907PubMedCrossRefGoogle Scholar
  67. Nichols WC, Seligsohn U, Zivelin A, Terry VH, Hertel CE, Wheatley MA, Moussalli MJ, Hauri HP, Ciavarella N, Kaufman RJ, Ginsburg D (1998) Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93: 61–70PubMedCrossRefGoogle Scholar
  68. Nickel W, Malsam J, Gorgas K, Ravazzola M, Jenne N, Helms JB, Wieland FT (1998) Uptake by COPI-coated vesicles of both anterograde and retrograde cargo is inhibited by GTPgammaS in vitro. J Cell Sci 111: 3081–3090PubMedGoogle Scholar
  69. O’Kelly I, Butler MH, Zilberberg N, Goldstein SA (2002) Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell 111: 577–588PubMedCrossRefGoogle Scholar
  70. Orci L, Amherdt M, Ravazzola M, Perrelet A, Rothman JE (2000a) Exclusion of Golgi residents from transport vesicles budding from Golgi cisternae in intact cells. J Cell Biol 150: 1263–1270PubMedCrossRefGoogle Scholar
  71. Orci L, Glick BS, Rothman JE (1986) A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell 46: 171–184PubMedCrossRefGoogle Scholar
  72. Orci L, Palmer DJ, Amherdt M, Rothman JE (1993) Coated vesicle assembly in the Golgi requires only coatomer ARF proteins from the cytosol. Nature 364: 732–734CrossRefGoogle Scholar
  73. Orci L, Ravazzola M, Volchuk A, Engel T, Gmachl M, Amherdt M, Perrelet A, Sollner TH, Rothman JE (2000b) Anterograde flow of cargo across the Golgi stack potentially mediated via bidirectional “percolating ” COPI vesicles. Proc Natl Acad Sci USA 97: 10400–10405PubMedCrossRefGoogle Scholar
  74. Orci L, Stamnes M, Ravazzola M, Amherdt M, Perrelet A, Sollner TH, Rothman JE (1997) Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90: 335–349PubMedCrossRefGoogle Scholar
  75. Orci L, Tagaya M, Amherdt M, Perrelet A, Donaldson JG, Lippincott-Schwartz J, Klausner RD, Rothman JE (1991) Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisternae. Cell 64: 1183–1195PubMedCrossRefGoogle Scholar
  76. Ostermann J, Orci L, Tani K, Amherdt M, Ravazzola M, Elazar Z, Rothman JE (1993) Stepwise assembly of functionally active transport vesicles. Cell 75: 1015–1025PubMedCrossRefGoogle Scholar
  77. Pavel J, Harter C, Wieland FT (1998) Reversible dissociation of coatomer: functional characterization of a beta/delta-coat protein subcomplex. Proc Natl Acad Sci USA 95: 2140–2145PubMedCrossRefGoogle Scholar
  78. Pepperkok R, Whitney JA Gomez M, Kreis TE (2000) COPI vesicles accumulating in the presence of a GTP restricted arf 1 mutant are depleted of anterograde and retrograde cargo. J Cell Sci 113 (Pt 1): 135–144PubMedGoogle Scholar
  79. Peyroche A, Courbeyrette R, Rambourg A, Jackson CL (2001) The ARF exchange factors Gea1p and Gea2p regulate Golgi structure and function in yeast. J Cell Sci 114: 2241–2253PubMedGoogle Scholar
  80. Peyroche A, Paris S, Jackson CL (1996) Nucleotide exchange on ARF mediated by yeast Gea1 protein. Nature 384: 479–481PubMedCrossRefGoogle Scholar
  81. Rabouille C, Klumperman J (2005) Opinion: the maturing role of COPI vesicles in intra-Golgi transport. Nat Rev Mol Cell Biol 6: 812–817PubMedCrossRefGoogle Scholar
  82. Randazzo PA, Terui T, Sturch S, Fales HM, Ferrige AG, Kahn RA (1995) The myristoylated amino terminus of ADP-ribosylation factor 1 is a phospholipid-and GTP-sensitive switch. J Biol Chem 270: 14809–14815PubMedCrossRefGoogle Scholar
  83. Reinhard C, Harter C, Bremser M, Brugger B, Sohn K, Helms JB, Wieland F (1999) Receptor-induced polymerization of coatomer. Proc Natl Acad Sci USA 96: 1224–1228PubMedCrossRefGoogle Scholar
  84. Reinhard C, Schweikert M, Wieland FT, Nickel W (2003) Functional reconstitution of COPI coat assembly and disassembly using chemically defined components. Proc Natl Acad Sci USA 100: 8253–8257PubMedCrossRefGoogle Scholar
  85. Ringstad N, Gad H, Low P, Di Paolo G, Brodin L, Shupliakov O, De Camilli P (1999) Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 24: 143–154PubMedCrossRefGoogle Scholar
  86. Santy LC, Casanova JE (2001) Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J Cell Biol 154: 599–610PubMedCrossRefGoogle Scholar
  87. Saraste J, Palade GE, Farquhar MG (1987) Antibodies to rat pancreas Golgi subfractions: identification of a 58-kD cis-Golgi protein. J Cell Biol 105: 2021–2029PubMedCrossRefGoogle Scholar
  88. Schmidt A, Wolde M, Thiele C, Fest W, Kratzin H, Podtelejnikov AV, Witke W, Huttner WB, Soling HD (1999) Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401: 133–141PubMedCrossRefGoogle Scholar
  89. Schweizer A, Fransen JA, Bachi T, Ginsel L, Hauri HP (1988) Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J Cell Biol 107: 1643–1653.PubMedCrossRefGoogle Scholar
  90. Semenza JC, Hardwick KG, Dean N, Pelham HR (1990) ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61: 1349–1357.PubMedCrossRefGoogle Scholar
  91. Serafini T, Orci L, Amherdt M, Brunner M, Kahn RA, Rothman JE (1991a) ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67: 239–253PubMedCrossRefGoogle Scholar
  92. Serafini T, Stenbeck G, Brecht A, Lottspeich F, Orci L, Rothman JE, Wieland FT (1991b) A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to the clathrin-coated vesicle coat protein beta-adaptin. Nature 349: 215–220PubMedCrossRefGoogle Scholar
  93. Simpson F, Hussain NK, Qualmann B, Kelly RB, Kay BK, McPherson PS, Schmid SL (1999) SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Nat Cell Biol 1: 119–124PubMedCrossRefGoogle Scholar
  94. Sohn K, Orci L, Ravazzola M, Amherdt M, Bremser M, Lottspeich F, Fiedler K, Helms JB, Wieland FT (1996) A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding. J Cell Biol 135: 1239–1248PubMedCrossRefGoogle Scholar
  95. Spang A, Matsuoka K, Hamamoto S, Schekman R, Orci L (1998) Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. Proc Natl Acad Sci USA 95: 11199–11204PubMedCrossRefGoogle Scholar
  96. Spano S, Silletta MG, Colanzi A, Alberti S, Fiucci G, Valente C, Fusella A, Salmona M, Mironov A, Luini A, Corda D (1999) Molecular cloning and functional characteriza-tion of brefeldin A-ADP-ribosylated substrate. A novel protein involved in the maintenance of the Golgi structure. J Biol Chem 274: 17705–17710PubMedCrossRefGoogle Scholar
  97. Springer S, Chen E, Duden R, Marzioch M, Rowley A, Hamamoto S, Merchant S, Schekman R (2000) The p24 proteins are not essential for vesicular transport in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97: 4034–4039PubMedCrossRefGoogle Scholar
  98. Springer S, Spang A, Schekman R (1999) A primer on vesicle budding. Cell 97: 145–148PubMedCrossRefGoogle Scholar
  99. Stamnes MA, Craighead MW, HoeMH, Lampen N, Geromanos S, Tempst P, Rothman JE (1995) An integral membrane component of coatomer-coated transport vesicles defines a family of proteins involved in budding [published erratum appears in Proc Natl Acad Sci USA 1995 Nov 7; 92(23): 10816]. Proc Natl Acad Sci USA 92: 8011–8015PubMedCrossRefGoogle Scholar
  100. Stenbeck G, Harter C, Brecht A, Herrmann D, Lottspeich F, Oric L, Wieland FT (1993) Beta prime COP, a novel subunit of coatomer. EMBO J 12: 2841–2845PubMedGoogle Scholar
  101. Tanigawa G, Orci L, Amherdt M, Ravazzola M, Helms JB, Rothman JE (1993) Hydrolysisof bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J Cell Biol 123: 1365–1371PubMedCrossRefGoogle Scholar
  102. Teasdale RD, Jackson MR (1996) Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the Golgi apparatus. Annu Rev Cell Dev Biol 12:27–54PubMedCrossRefGoogle Scholar
  103. Tisdale EJ, Plutner H, Matteson J, Balch WE (1997) p53/58 binds COPI and is required for selective transport through the early secretory pathway. J Cell Biol 137: 581–593PubMedCrossRefGoogle Scholar
  104. Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M, et al. (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6: 1071–1081PubMedCrossRefGoogle Scholar
  105. Waters MG, Serafini T, Rothman JE (1991) ‘Coatomer’: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349: 248–251PubMedCrossRefGoogle Scholar
  106. Wegmann D, Hess P, Baier C, Wieland FT, Reinhard C (2004) Novel isotypic gamma/ zeta subunits reveal three coatomer complexes in mammals. Mol Cell Biol 24: 1070–1080PubMedCrossRefGoogle Scholar
  107. Weigert R, Silletta MG, Spano S, Turacchio G, Cericola C, Colanzi A, Senatore S, Mancini R, Polishchuk EV, Salmona M, et al. (1999) CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402: 429–433PubMedCrossRefGoogle Scholar
  108. Wessels E, Duijsings D, Niu TK, Neumann S, Oorschot VM, De Lange F, Lanke KH, Klumperman J, Henke A, Jackson CL, et al. (2006) COP-I assembly by inhibiting the guanine nucleotide exchange factor GBF1. Dev Cell 11: 191–201PubMedCrossRefGoogle Scholar
  109. White J, Johannes L, Mallard F,Girod A, Grill S, Reinsch S, Keller P, Tzschaschel B, Echard A, Goud B, Stelzer EH (1999) Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Biol 147: 743–760PubMedCrossRefGoogle Scholar
  110. Yang J, Lee S, Spanò S, Gad H, Zhang L, Nie Z, Bonazzi M, Corda D, Luini A, Hsu V (2005) A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBOJ 24:4133–4143CrossRefGoogle Scholar
  111. Yang JS, Lee SY, Gao M, Bourgoin S, Randazzo PA, Premont RT, Hsu VW(2002) ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J Cell Biol 159:69–78PubMedCrossRefGoogle Scholar
  112. Yang JS, Zhang L, Lee SY, Gad H, Luini A, Hsu VW (2006) Key components of the fission machinery are interchangeable. Nat Cell Biol 8: 1376–1382PubMedCrossRefGoogle Scholar
  113. Yuan H, Michelsen K, Schwappach B (2003) 14-3-3 dimers probe the assembly status of multimeric membrane proteins. Curr Biol 13: 638–646PubMedCrossRefGoogle Scholar
  114. Zerangue N, Malan MJ, Fried SR, Dazin PF, Jan YN, Jan LY, Schwappach B (2001) Analysis of endoplasmic reticulum trafficking signals by combinatorial screening in mammalian cells. Proc Natl Acad Sci USA 98: 2431–2436PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2008

Authors and Affiliations

  • Victor W. Hsu
    • 1
  • Jia- Shu Yang
    • 2
    • 3
  • Stella Y. Lee
    • 2
  1. 1.Harvard Medical School Brigham and Women’s HospitalBostonUSA
  2. 2.Division of Rheumatology, Immunology and AllergyBrigham and Women’s HospitalBostonUSA
  3. 3.Department of MedicineHarvard Medical SchoolBostonUSA

Personalised recommendations