Nucleotide sugar transporters of the Golgi apparatus

  • Weihan Zhao
  • Karen J. Colley


The Golgi apparatus is the major site of protein, lipid and proteoglycan glycosylation. The glycosylation enzymes, as well as kinases and sulfatases that catalyze phosphorylation and sulfation, are localized within the Golgi cisternae in characteristic distributions that frequently reflect their order in a particular pathway (Kornfeld and Kornfeld 1985; Colley 1997). The glycosyl-transferases, sulfotransferases and kinases are “transferases” that require activated donor molecules for the reactions they catalyze. For eukaryotic, fungal and protozoan glycosyltransferases these are the nucleotide sugars UDP-N-acetylglucosamine (UDP-GlcNAc), UDP-galactose (UDP-Gal), GDP-fucose (GDP-Fuc), CMP-sialicacid (CMP-Sia), UDP-glucuronicacid (UDP-GlcA), GDP-mannose (GDP-Man), and UDP-xylose (UDP-Xyl) (Hirschberg et al. 1998). For the kinases, ATP functions as the donor, while for the sulfotransferases, adenosine 3′-phosphate 5′-phosphate (PAPS) acts as the donor (Hirschberg et al. 1998). The active sites of all these enzymes are oriented towards the lumen of the Golgi cisternae. This necessitates the translocation of their donors from the cytosol into the lumenal Golgi compartments. In this chapter we will focus on the structure, function and localization of the Golgi nucleotide sugar transporters (NSTs), and highlight the diseases and developmental defects associated with defective transporters. We direct the reader to several excellent reviews on Golgi transporters for additional details and references (Hirschberg et al. 1998; Berninsone and Hirschberg 2000; Gerardy-Schahn et al. 2001; Handford et al. 2006; Caffaro and Hirschberg 2006).


Nucleotide Sugar Golgi Localization Complex Vertebral Malformation Nucleotide Sugar Transporter Golgi Lumen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abe M, Noda Y, Adachi H, Yoda K (2004) Local ization of GDP-mannose transporter in the Golgi requires retrieval to the endoplasmic reticulum depending on its cytoplasmic tail and coatomer. J Cell Sci 117: 5687–5696PubMedCrossRefGoogle Scholar
  2. Abeijon C, Yanagisawa K, Mandon EC, Hausler A, Moremen K, Hirschberg CB (1993) Guanosine diphosphatase is required for protein and sphingolipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae. J Cell Biol 122: 307–323PubMedCrossRefGoogle Scholar
  3. Abeijon C, Mandon EC, Robbins PW, Hirschberg CB (1996a) A mutant yeast deficient in Golgi transport of uridine diphosphate N-acetylglucosamine. J Biol Chem 271: 8851–8854PubMedCrossRefGoogle Scholar
  4. Abeijon C, Robbins PW, Hirschberg CB (1996b) Molecular cloning of the Golgi apparatus uridine diphosphate-N-acetylglucosamine transporter from Kluyveromyces lactis. Proc Natl Acad Sci USA 93: 5963–5968PubMedCrossRefGoogle Scholar
  5. Aoki K, Ishida N, Kawakita M (2001) Substrate recognition by UDP-galactose and CMP-sialic acid transporters. Different sets of transmembrane helices are utilized for the specific recognition of UDP-galactose and CMP-sialic acid. J Biol Chem 276: 21555–21561PubMedCrossRefGoogle Scholar
  6. Aoki K, Ishida N, Kawakita M (2003) Substrate recognition by nucleotide sugar transporters. Further characterization of substrate recognition regions by analyses of UDP-galactose/CMP-sialic acid transporter chimeras and biochemical analyses of the substrate specificity of parental and chimeric transporters. J Biol Chem 278: 22887–22893PubMedCrossRefGoogle Scholar
  7. Ashikov A, Routier F, Fuhlott J, Helmus Y, Wild M, Gerardy-Schahn R, Bakker H (2005) The human solute carrier gene SLC35B4 encodes a bifunctional nucleotide sugar transporter with specificity for UDP-xylose and UDP-N-acetylglucosamine. J Biol Chem 280: 27230–27235PubMedCrossRefGoogle Scholar
  8. Ballou L, Hitzeman RA, Lewis MS, Ballou CE (1991) Proc Natl Acad Sci USA 88: 3209–3212PubMedCrossRefGoogle Scholar
  9. Barlowe C (2003) Signalsfor COPII-dependent export from the ER: what’s the ticket out? Trends Cell Biol 13: 295–300PubMedCrossRefGoogle Scholar
  10. Becker DJ, Lowe JB (1999) Leukocyte adhesion deficiency type II. Biochim BiophysActa 1455: 193–204Google Scholar
  11. Berninsone P, Miret JJ, Hirschberg CB (1994) The Golgi guanosine diphosphatase is required for transport of GDP-mannose into the lumen of Saccharomyces cere visiae Golgi vesicles. J Biol Chem 269: 207–211PubMedGoogle Scholar
  12. Berninsone P, Eckhardt M, Gerardy-Schahn R, Hirschberg CB (1997) Functional expression of the murine Golgi CMP-sialic acid transporter in Saccharomyces cerevisiae. J Biol Chem 272: 12616–12619PubMedCrossRefGoogle Scholar
  13. Berninsone PM, Hirschberg CB (2000) Nucleotide sugar transporters of the Golgi apparatus. Curr Opin Struct Biol 10: 542–547PubMedCrossRefGoogle Scholar
  14. Berninsone P, Hwang H-Y, Zemtseva I, Horvitz HR, Hirschberg CB (2001) SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N-acetylgalactosamine, and UDP-galactose. Proc Natl Acad Sci USA 98: 3738–3743PubMedCrossRefGoogle Scholar
  15. Brandli AW, Hansson GC, Rodriguez-Boulan E, and Simons K (1988) A polarized epithelial cell mutant deficient in translocation of UDP-galactose into the Golgi complex. J Biol Chem 263: 16283–16290PubMedGoogle Scholar
  16. Caffaro CE, Hirschberg CB (2006) Nucleotide sugar transporters of the Golgi apparatus: from basic science to diseases. Acc Chem Res 39: 805–812PubMedCrossRefGoogle Scholar
  17. Caffaro CE, Hirschberg CB, Berninsone PM (2007) Functional redundancy between two Caenorhabditis elegans nucleotide sugar transporters with a novel transport mechanism. J Biol Chem 282: 27970–27975PubMedCrossRefGoogle Scholar
  18. Caffaro CE, Hirschberg CB, Berninsone PM (2006) Independent and simultaneous translocation of two substrates by a nucleotide sugar transporter. Proc Natl Acad Sci USA 103: 16176–16181PubMedCrossRefGoogle Scholar
  19. Capul AA, Barron T, Dobson DE, Turco SJ, Beverley SM (2007) Two functionally divergent UDP-Gal nucleotide sugar transporters participate in phosphoglycan synthesis in Leishmania major. J Biol Chem 282: 14006–14017PubMedCrossRefGoogle Scholar
  20. Colley KJ (1997) Golgi localization of glycosyltransferases: more questions than answers. Glycobiology 7: 1–13PubMedCrossRefGoogle Scholar
  21. D’Alessio C, Caramelo JJ, Parodi AJ (2005) Absence of nucleoside diphosphatase activities in the yeast secretory pathway does not abolish nucleotide sugar-dependent protein glycosylation. J Biol Chem 280: 40417–40427PubMedCrossRefGoogle Scholar
  22. Dean N, Zhang YB, Poster JB (1997) The VRG4 gene is required for GDP-mannose transport into the lumen of the Golgi in the yeast, Saccharomyces cerevisiae. J Biol Chem 272: 31908–31914PubMedCrossRefGoogle Scholar
  23. Descoteaux A, Luo Y, Turco SJ, Beverley SM (1995) A specialized pathway affecting virulence glycoconjugates of Leishmania. Science 269: 1869–1872PubMedCrossRefGoogle Scholar
  24. Deutscher SL, Nuwayhid N, Stanley P, Briles EIB, Hirschberg CB (1984) Translocation across Golgi vesicle membranes: a CHO glycosylation mutant deficient in CMP-sialic acid transport. Cell 39: 295–299PubMedCrossRefGoogle Scholar
  25. Eckhardt M, Muhlenhoff M, Bethe A, Gerardy-Schahn R(1996) Expression cloning of the Golgi CMP-sialic acid transporter. Proc Natl Acad Sci USA 93: 7572–7576PubMedCrossRefGoogle Scholar
  26. Eckhardt M, Gotza B, Gerardy-Schahn R (1998) Mutants of the CMP-sialic acid transporter causing the Lec2 phenotype. J Biol Chem 273: 20189–20195PubMedCrossRefGoogle Scholar
  27. Eckhardt M, Gotza B, Gerardy-Schahn R(1999) Membrane topology of the mammalian CMP-sialic acid transporter. J Biol Chem 274: 8779–8787PubMedCrossRefGoogle Scholar
  28. Fleischer B, McIntyre JO, Kempner ES (1993) Target sizes of galactosyltransferase, sialyltransferase, and uridine diphosphatase in Golgi apparatus of rat liver. Biochemistry 32: 2076–2081PubMedCrossRefGoogle Scholar
  29. Gao X-D, Dean N (2000) Distinct protein domains of the yeast Golgi GDP-mannose transporter mediate oligomer assembly and export from the endoplasmic reticulum. J Biol Chem 275: 17718–17727PubMedCrossRefGoogle Scholar
  30. Gao X-D, Nishikawa A, Dean N (2001) Identification of a conserved motif in the yeast Golgi GDP-mannose transporter required for binding to nucleotide sugar. J Biol Chem 276: 4424–4432PubMedCrossRefGoogle Scholar
  31. Gerardy-Schahn R, Oelmann S, Bakker H (2001) Nucleotide sugar transporters: biological and functional aspects. Biochimie 83: 775–782PubMedCrossRefGoogle Scholar
  32. Goto S, Taniguchi M, Muraoka M, Toyoda H, Sado Y, Kawakita M, Hayashi S (2001) UDP-sugar transporter implicated in glycosylation and processing of Notch. Nature Cell Biol 3: 816–822PubMedCrossRefGoogle Scholar
  33. Guillen E, Abeijon C, Hirschberg CB (1998) Mammalian Golgi apparatus UDP-N-acet-ylglucosamine transporter: molecular cloning by phenotypic correction of a yeast mutant. Proc Natl Acad Sci USA 95: 7888–7892PubMedCrossRefGoogle Scholar
  34. Haltiwanger RS, Lowe JB (2004) Role of glycosylation in development. Annu Rev Biochem 73: 491–537PubMedCrossRefGoogle Scholar
  35. Handford M, Rodriguez-Furlan C, Orellana A (2006) Nucleotide-sugar transporters: structure, function and roles in vivo. Braz J Med Biol Res 39: 1149–1158PubMedGoogle Scholar
  36. Helmus Y, Denecke J, Yaubenia S, Robinson P, Luhn K, Watson DL, McGrogan PJ, Vestweber D, Marquardt T, Wild MK (2006) Leukocyte adhesion deficiency II patients with a dual defect of the GDP-fucose transporter. Blood 107: 3959–3966PubMedCrossRefGoogle Scholar
  37. Herman T, Horvitz HR (1999) Three proteins involved in Caenorhabditis elegans invagination are similar to components of a glycosylation pathway. Proc Natl Acad Sci 96: 974–979PubMedCrossRefGoogle Scholar
  38. Herman T, Hartweig E, Horvitz HR (1999) sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. Proc Natl Acad Sci USA 96: 968–973PubMedCrossRefGoogle Scholar
  39. Hirshberg CB, Robbins PW, Abeijon C (1998) Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem 67: 49–69CrossRefGoogle Scholar
  40. Hirschberg CB (2001) Golgi nucleotide sugar transport and leukocyte adhesion deficiency II. J Clin Invest 108: 3–6PubMedGoogle Scholar
  41. Hoflich J, Berninsone P, Gobel C, Gravato-Nobre MJ, Libby BJ, Darby C, Politz SM, Hodgkin J, Hirschberg CB, Baumeister R (2004) Loss of srf-3-encoded nucleotide sugar transporter activity in Caenorhabditis elegans alters surface antigenicity and prevents bacterial adherence. J Biol Chem 279: 30440–30448PubMedCrossRefGoogle Scholar
  42. Hong K, Ma D, Beverley SM, Turco SJ (2000) The Leishmania GDP-mannose transporter is an autonomous, multi-specific, hexameric complex of LPG2 subunits. Biochemistry 39:2013–2022PubMedCrossRefGoogle Scholar
  43. Huang MC, Zollner O, Moll T, Maly P, Thall AD, Lowe JB, Vestweber D (2000) P-selectin glycoprotein ligand-1 and E-selectin ligand-1 are differentially modified by fuco-syltransferases Fuc-TIV and Fuc-TVII in mouse neutrophils. J Biol Chem 275: 31353–31360PubMedCrossRefGoogle Scholar
  44. Hwang H-Y, Horvitz HR (2002) The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenohabditis elegans vulval morphogenesis and embryonic development. Proc Natl Acad Sci USA 99: 14218–14223PubMedCrossRefGoogle Scholar
  45. Ishida N, Miura N, Yoshioka S, Kawakita M (1996) Molecular cloning and characterization of a novel isoform of the human UDP-galactose transporter, and of related complementary DNAs belonging ot the nucleotide-sugar transporter gene family. J Biochem 120: 1074–1078PubMedGoogle Scholar
  46. Ishida N, Kuba T, Aoki K, Miyatake S, Kawakita M, Sanai Y (2005) Identification and characterization of human Golgi nucleotide sugar transporter SLC35D2, a novel member of the SLC35 mucleotide sugar transporter family. Genomics 85: 106–116PubMedCrossRefGoogle Scholar
  47. Kabuß R, Ashikov A, Oelmann S, Gerardy-Schahn R, Bakker H (2005) Endoplasmic reticulum retention of the large splice variant of the UDP-galactose transporter is caused by a dilysine motif. Glycobiology 15: 905–911PubMedCrossRefGoogle Scholar
  48. Kornfeld S, Kornfeld R (1985) The assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54: 631–664PubMedCrossRefGoogle Scholar
  49. Locker JK, Klumperman J, Oorschot V, Horzinek MC, Geuze HJ, Rottier PJ (1994) The cytoplasmictail of mouse hepatitis virus M protein is essential but not sufficient for its retention in the Golgi complex. J Biol Chem 269: 28263–28269PubMedGoogle Scholar
  50. Lubke T, Marquardt T, Von Figura K, Köorner C (1999) A new type of carbohydratedeficient glycoprotein syndrome due to a decreased import of GDP-fucose into the Golgi. J Biol Chem 274: 25986–25989PubMedCrossRefGoogle Scholar
  51. Lubke T, Marquardt T, Etzoni A, Hartmann E, Von Figura K, Köorner C (2001) Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet 28: 73–76PubMedCrossRefGoogle Scholar
  52. Luhn K, Wild MK, Eckhardt M, Gerardy-Schahn R, Vestweber D (2001) The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet 28: 69–72PubMedCrossRefGoogle Scholar
  53. Ma D, Russell DG, Beverley SM, Turco SJ (1997) Golgi GDP-mannose uptake requires Leishmania LPG2. J Biol Chem 272: 3799–3805PubMedCrossRefGoogle Scholar
  54. Machamer CE, Rose JK (1987) A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. J Cell Biol 105: 1205–1214PubMedCrossRefGoogle Scholar
  55. Marquardt T, Brune T, Luhn K, Zimmer K-P, Köorner C, Fabritz L, Van der Werft N, Vormoor J, Freeze HH, Louwen F, Biermann B, Harms E, Von Figura K, Vestweber D, Koch HG (1999a) Leukocyte adhesion deficiency II syndrome, a generalized defect in fucose metabolism. J Pediatr 134: 681–688PubMedCrossRefGoogle Scholar
  56. Marquardt T, Luhn K, Srikrishna G, Freeze HH, Harms E, Vestweber D (1999b) Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 94: 3976–3985PubMedGoogle Scholar
  57. Martinez-Duncker I, Mollicone R, Codogno P, Oriol R (2003) The nucleotide-sugar transporter family: a phylogenetic approach. Biochimie 85: 245–260PubMedCrossRefGoogle Scholar
  58. Martinez-Duncker I, Dupré T, Piller V, Piller F, Candelier J-J, Trichet C, Tchernia G, Oriol R, Mollicone R (2005) Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the Golgi CMP-sialicacid transporter. Blood 105: 2671–2676PubMedCrossRefGoogle Scholar
  59. Mironov AA, Beznoussenko GV, Polishchuk RS, Trucco A (2005) Intra-Golgi transport: a way to a new paradigm? Biochim Biophys Acta 1744: 340–350PubMedCrossRefGoogle Scholar
  60. Miura N, Ishida N, Hoshino M, Yamauchi M, Hara T, Ayusawa D, Kawakita M (1996) Human UDP-galactose transporter: molecular cloning of a complementary DNA that complements the genetic defect of a mutant cell line deficient in UDP-galactose translocator. J Biochem 120: 236–241PubMedGoogle Scholar
  61. Muraoka M, Kawakita M, Ishida N (2001) Molecular characterization of human UDP-glucuronic acid/UDP-N-acetylgalactosamine transporter, a novel nucleotide sugar transporter with dual substrate specificity. FEBS Lett 495: 87–93PubMedCrossRefGoogle Scholar
  62. Muraoka M, Miki T, Ishida N, Hara T, Kawakita M (2007) Variety of nucleotide sugar transporters with respect to the interaction with nucleoside mono-and dispho-sphates. J Biol Chem 282: 24615–24622PubMedCrossRefGoogle Scholar
  63. Oelmann S, Stanley P, Gerardy-Schahn R (2001) Point mutations identified in Lec8 Chinese hamster ovary glycosylation mutants that inactivate both the UDP-galactose and CMP-sialic acid transporters. J Biol Chem 276: 26291–26300PubMedCrossRefGoogle Scholar
  64. Patnaik SK, Stanley P (2006) Lectin-resistant CHO glycosylation mutants. Meth Enz 416: 159–182CrossRefGoogle Scholar
  65. Poster JB, Dean N (1996) The yeast VRG4 gene is required for normal Golgi functions and defines a new family of related genes. J Biol Chem 271: 3837–3845PubMedCrossRefGoogle Scholar
  66. Puglielli L, Hirschberg CB (1999) Reconstitution, identification, and purification of the rat liver Golgi membrane GDP-fucose transporter. J Biol Chem 274: 35596–35600PubMedCrossRefGoogle Scholar
  67. Puglielli L, Mandon EC, Rancour DM, Menon AK, Hirschberg CB (1999) Identification and purification of the rat liver Golgi membrane UDP-N-acetylgalactosamine transporter. J Biol Chem 274: 4474–4479PubMedCrossRefGoogle Scholar
  68. Segawa H, Kawakita M, Ishida N (2002) Human and Drosophila UDP-galactose transporters transport UDP-N-acetylgalactosamine in addition to UDP-galactose. Eur J Biochem 269: 128–138PubMedCrossRefGoogle Scholar
  69. Segawa H, Soares RP, Kawakita M, Beverley SM, Turco SJ (2005) Reconstitution of GDP-mannose transport activity with purified Leishmania LPG2 protein into liposomes. J Biol Chem 280: 2028–2035PubMedCrossRefGoogle Scholar
  70. Selva EM, Hong K, Baeg G-H, Beverley SM, Turco SJ, Perrimon N, Hacker U (2001) Dual role of the fringe connection gene in both heparan sulphate and fringe-dependent signaling events. Nat Cell Biol 3: 809–815PubMedCrossRefGoogle Scholar
  71. Sprong H, Degroote S, Nilsson T, Kawakita M, Ishida N, Van der Sluijs P, Van Meer G (2003) Association of the Golgi UDP-galactose transporter with UDP-galactose: ceramide galactosyltransferase allows UDP-galactose import in the endoplasmic reticulum. Mol Biol Cell 14: 3482–3493PubMedCrossRefGoogle Scholar
  72. Suda T, Kamiyama S, Suzuki M, Kikuchi N, Nakayama K, Narimatsu H, Jigami Y, Aoki T, Nishihara S (2004) Molecular cloning and characterization of a human multisub-strate specific nucleotide-sugar transporter homologous to Drosophila fringe connection. J Biol Chem 279: 26469–26474PubMedCrossRefGoogle Scholar
  73. Swift AM, Machamer CE (1991) A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. J Cell Biol 115: 19–30PubMedCrossRefGoogle Scholar
  74. Tabuchi M, Tanaka N, Iwahara S, Takegawa K (1997) The Schizosaccharomyces pombe gms1 + gene encodes an UDP-galactose transporter homologue required for protein galactosylation. Biochem Biophys Res Commun 232: 121–125PubMedCrossRefGoogle Scholar
  75. Thomsen B, Horn P, Panitz F, Bendixen E, Petersen AH, Holm L-E, Nielsen VH, Agerholm JS, Arnbjerg J, Bendixen C (2006) A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes complex vertebral malformation. Genome Res 16: 97–105PubMedCrossRefGoogle Scholar
  76. Tiralongo J, Ashikov A, Routier F, Eckhardt M, Bakker H, Gerardy-Schahn R, Von Itzstein M (2006) Functional expression of the CMP-sialic acid transporter in Escherichia coli and its identification as a simple mobile carrier. Glycobiology 16: 73–81PubMedCrossRefGoogle Scholar
  77. Toma L, Pinhal MA, Dietrich CP, Nader HB, Hirschberg, CB (1996) Transport of UDP-galactose into the Golgi lumen regulates the biosynthesis of proteoglycans. J Biol Chem 271: 3897–3901PubMedCrossRefGoogle Scholar
  78. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3: 97–130PubMedCrossRefGoogle Scholar
  79. Willig T-N, Breton-Gorius J, Elbim C, Mignotte V, Kaplan C, Mollicone R, Pasquier C, Filipe A, Mielot F, Cartron J-P, Gougerot-Pocidalo M-A, Debili N, Guichard, Dommergues J-P, Mohandas N, Tchernia G (2001) Macrothrombocytopenia with abnormal demarcation membranes in megakaryocytes and neutropenia with a complete lack of sialyl-Lewis-X antigen in leukocytes & #x2014; a new syndrome? Blood 97: 826–828PubMedCrossRefGoogle Scholar
  80. Zhao W, Chen TL, Vertel BM, Colley KJ (2006) The CMP-sialic acid transporter is localized in the medial-trans Golgi and possesses two specific endoplasmic reticulum export motifs in its carboxyl-terminal cytoplasmic tail. J Biol Chem 281: 31106–31118PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2008

Authors and Affiliations

  • Weihan Zhao
  • Karen J. Colley

There are no affiliations available

Personalised recommendations