Viral bioinformatics

  • B. Adams
  • A. Carolyn McHardy
  • C. Lundegaard
  • T. LengauerEmail author


Pathogens have presented a major challenge to individuals and populations of living organisms, probably as long as there has been life on earth. They are a prime object of study for at least three reasons: (1) Understanding the way of pathogens affords the basis for preventing and treating the diseases they cause. (2) The interactions of pathogens with their hosts afford valuable insights into the working of the hosts’ cells, in general, and of the host’s immune system, in particular. (3) The co-evolution of pathogens and their hosts allows for transferring knowledge across the two interacting species and affords valuable insights into how evolution works, in general. In the past decade computational biology has started to contribute to the understanding of host-pathogen interaction in at least three ways which are summarized in the subsequent sections of this chapter.


Viral Variant Human Leucocyte Antigen Human Immune System Viral Evolution Epitope Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. The World Health Organization Global Influenza Program Surveillance Network (2005) Evolution of H5N1 avian influenza viruses in Asia. Emerg Infect Dis 11: 1515–1521Google Scholar
  2. Altmann A, Beerenwinkel N, Sing T, Savenkov I, Däumer M, Kaiser R, Rhee SY, Fessel WJ, Shafer RW, Lengauer T (2007) Improved prediction of response to antiretroviral combination therapy using the genetic barrier to drug resistance. Antivir Ther 12: 169–178PubMedGoogle Scholar
  3. Beerenwinkel N, Lengauer T, Selbig J, Schmidt B, Walter H, Korn K, Kaiser R, Hoffmann D (2001) Geno2pheno: interpreting genotypic HIV drug resistance tests. IEEE Intel Syst 16: 35–41CrossRefGoogle Scholar
  4. Beerenwinkel N, Schmidt B, Walter H, Kaiser R, Lengauer T, Hoffmann D, Korn K, Selbig J (2002) Diversity and complexity of HIV-1 drug resistance: a bioinformatics approach to predicting phenotype from genotype. Proc Natl Acad Sci USA 99: 8271–8276PubMedCrossRefGoogle Scholar
  5. Beerenwinkel N, Däumer M, Sing T, Rahnenführer J, Lengauer T, Selbig J, Hoffmann D, Kaiser R (2005a) Estimating HIV Evolutionary Pathways and the Genetic Barrier to Drug Resistance. J Infect Dis 191: 1953–1960PubMedCrossRefGoogle Scholar
  6. Beerenwinkel N, Rahnenführer J, Däumer M, Hoffmann D, Kaiser R, Selbig J, Lengauer T (2005b) Learning multiple evolutionary pathways from cross-sectional data. J Comput Biol 12: 584–598PubMedCrossRefGoogle Scholar
  7. Brusic V, Petrovsky N, Zhang G, Bajic VB (2002) Prediction of promiscuous peptides that bind HLA class I molecules. Immunol Cell Biol 80: 280–285PubMedCrossRefGoogle Scholar
  8. Bush RM, Bender CA, Subbarao K, Cox NJ, Fitch WM (1999) Predicting the evolution of human influenza A. Science 286: 1921–1925PubMedCrossRefGoogle Scholar
  9. Fitch WM, Bush RM, Bender CA, Cox NJ (1997) Long term trends in the evolution of H(3) HA1 human influenza type A. Proc Natl Acad Sci USA 94: 7712–7718PubMedCrossRefGoogle Scholar
  10. Haste Andersen P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15: 2558–2567PubMedCrossRefGoogle Scholar
  11. Heckerman D, Kadie C, Listgarten J (2007) Leveraging information across HLA alleles/supertypes improves epitope prediction. J Comput Biol 14: 736–746PubMedCrossRefGoogle Scholar
  12. Janeway C (2005) Immunobiology: the immune system in health and disease. Garland Science, New YorkGoogle Scholar
  13. Jensen MA, van’ t Wout AB (2003) Predicting HIV-1 coreceptor usage with sequence analysis. AIDS Rev 5: 104–112PubMedGoogle Scholar
  14. Johnson VA, Brun-Vezinet F, Clotet B, Gunthard HF, Kuritzkes DR, Pillay D, Schapiro JM, Richman DD (2007) Update of the Drug Resistance Mutations in HIV-1: 2007. Top HIV Med 15: 119–125PubMedGoogle Scholar
  15. Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007) Large-Scale Validation of Methods for Cytotoxic T-Lymphocyte Epitope Prediction. BMC Bioinformatics 8: 424PubMedCrossRefGoogle Scholar
  16. Lengauer T, Sander O, Sierra S, Thielen A, Kaiser R (2007) Bioinformatics prediction of HIV coreceptor usage. Nat Biotechnol 25: 1407–1410PubMedCrossRefGoogle Scholar
  17. Lengauer T, Sing T (2006) Bioinformatics-assisted anti-HIV therapy. Nat Rev Microbiol 4: 790–797PubMedCrossRefGoogle Scholar
  18. Lundegaard C, Lund O, Kesmir C, Brunak S, Nielsen M (2007) Modeling the adaptive immune system: predictions and simulations. Bioinformatics 23: 3265–3275PubMedCrossRefGoogle Scholar
  19. Markel H (2005) The search for effective HIV vaccines. N Engl J Med 353: 753–757PubMedCrossRefGoogle Scholar
  20. Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, Røder G, Peters B, Sette A, Lund O, Buus S (2007a) Quantitative, pan-specific predictions of peptide binding to HLA-A and-B locus molecules. PLoS-One 2: e796PubMedCrossRefGoogle Scholar
  21. Nielsen M, Lundegaard C, Lund O (2007b) Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics 8: 238PubMedCrossRefGoogle Scholar
  22. Peters B, Bui HH, Frankild S, Nielson M, Lundegaard C, Kostem E, Basch D, Lamberth K, Harndahl M, Fleri W, Wilson SS, Sidney J, Lund O, Buus S, Sette A (2006) A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput Biol 2: e65PubMedCrossRefGoogle Scholar
  23. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50: 213–219PubMedCrossRefGoogle Scholar
  24. Rhee SY, Gonzales MJ, Kantor R, Betts BJ, Ravela J, Shafer RW (2003) Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res 31: 298–303PubMedCrossRefGoogle Scholar
  25. Roomp K, Beerenwinkel N, Sing T, Schülter E, Büch J, Sierra-Aragon S, Däumer M, Hoffmann D, Kaiser R, Lengauer T, Selbig J (2006) Arevir: A secure platfrom for designing personalized antiretroviral therapies against HIV. In: Leser U, Naumann F, Eckman B (eds) Third International Workshop on Data Integration in the Life Sciences (DILS 2006). Springer Verlag, Hinxton, U.K. 4075, pp 185–194Google Scholar
  26. Schmidt B, Walter H, Zeitler N, Korn K (2002) Genotypic drug resistance interpretation systems — the cutting edge of antiretroviral therapy. AIDS Rev 4: 148–156PubMedGoogle Scholar
  27. Sing T, Svicher V, Beerenwinkel N, Ceccherini-Silberstein F, Däumer M, Kaiser R, Walter H, Korn K, Hoffmann D, Oette M, Rockstroh J, Fätkenheuer G, Perno C-F, Lengauer T (2005) Characterization of novel HIV drug resistance mutations using clustering, multidimensional scaling and SVM-Based feature ranking. In: Alipio MJ, Torgo L, Bradzil PB, Camacho R, Gama J (eds) Knowledge discovery in databases: PKDD 2005. Lecture notes in computer science No. 3721, Springer Verlag, Berlin/Heidelberg, pp 285–296CrossRefGoogle Scholar
  28. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2004) Mapping the antigenic and genetic evolution of influenza virus. Science 305: 371–376PubMedCrossRefGoogle Scholar
  29. Sundar K, Boesen A, Coico R (2007) Computational prediction and identification of HLA-A2.1-specific Ebola virus CTL epitopes. Virology 360: 257–263PubMedCrossRefGoogle Scholar
  30. Sylvester-Hvid C, Nielsen M, Lamberth K, Roder G, Justesen S, Lundegaard C, Worning P, Thomadsen H, Lund O, Brunak S, Buus S (2004) SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation. Tissue Antigens 63: 395–400PubMedCrossRefGoogle Scholar
  31. Taubenberger JK, Morens DM, Fauci AS (2007) The next influenza pandemic: can it be predicted? JAMA 297: 2025–2027PubMedCrossRefGoogle Scholar
  32. Wallace RG, Hodac H, Lathrop RH, Fitch WM (2007) A statistical phylogeography of influenza A H5N1. Proc Natl Acad Sci USA 104: 4473–4478PubMedCrossRefGoogle Scholar
  33. Wang M, Lamberth K, Harndahl M, Roder G, Stryhn A, Larsen MV, Nielsen M, Lundegaard C, Tang ST, Dziegiel MH, Rosenkvist J, Pedersen AE, Buus S, Claesson MH, Lund O (2007) CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening. Vaccine 25: 2823–2831PubMedCrossRefGoogle Scholar
  34. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56: 152–179PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2008

Authors and Affiliations

  • B. Adams
    • 1
  • A. Carolyn McHardy
    • 1
  • C. Lundegaard
    • 2
  • T. Lengauer
    • 1
    Email author
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.Center for Biological Sequence Analysis, BioCentrum-DTUTechnical University of DenmarkKongens LynbyDenmark

Personalised recommendations