On the Diophantine Equation Gn(x) = Gm(y) with Q (x, y)=0

  • Clemens Fuchs
  • Attila Pethő
  • Robert F. Tichy
Part of the Developments in Mathematics book series (DEVM, volume 16)


Let K denote an algebraically closed field of characteristic 0, and let A0,..., Ad–1, G0,..., G d- 1 ∈ K[X] and \( \left( {Gn\left( X \right)} \right)_{n = 0}^\infty \) be a sequence of polynomials defined by the d- th order linear recurring relation
$$ G_{n + d} \left( X \right) = A_{d - 1} \left( X \right)G_{n + d - 1} \left( X \right) + \cdots + A_0 \left( X \right)G_n \left( X \right), for n \geqslant 0. $$
Furthermore, let P(X) ∈ K[X], deg P ≥ 1. Recently, we investigated the question, what can be said about the number of solutions of the Diophantine equation
$$ Gn\left( X \right) = Gm\left( {P\left( X \right)} \right). $$


Diophantine equations linear recurring sequences S-unit equations 

2000 Mathematics subject classification

Primary 11D45 Secondary 11D04 11D61 11B37 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bilu, Yu., Tichy, R.F.: The Diophantine equation f(x) = g(y). Acta Arith. 95, 261–288 (2000)MATHMathSciNetGoogle Scholar
  2. 2.
    Corvaja, P., Zannier, U.: Finiteness of integral values for the ratio of two linear recurrences. Invent. Math. 149, 431–451 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Evertse, J.-H., Győry, K..: On the number of solutions of weighted unit equations. Compos. Math. 66, 329–354 (1988)MATHGoogle Scholar
  4. 4.
    Evertse, J.-H., Győry, K., Stewart, C.L., Tijdeman, R.: S-Unit equations and their applications. In: Baker, A. (eds.) New Advances in Transcendence Theory, pp. 110–174. Cambridge University Press, Cambridge (1988)Google Scholar
  5. 5.
    Evertse, J.-H., Schlickewei, H.-P., Schmidt, W.M.: Linear equations in variables which lie in a multiplicative group. Ann. Math. 155, 1–30 (2002)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Fuchs, C: On the equation G n (x) = Gm (P(x)) for third order linear recurring sequences. Port. Math., N.S. 61, 1–24 (2004)MATHMathSciNetGoogle Scholar
  7. 7.
    Fuchs, C, Pethő, A.: Effective bounds for the zeros of linear recurrences in function fields. J. Théor. Nombres Bordx. 17, 749–766 (2005)MATHGoogle Scholar
  8. 8.
    Fuchs, C., Pethő, A., Tichy, R.F.: On the Diophantine equation G n (x) = Gm (P(x)). Monatsh. Math. 137, 173–196 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fuchs, C., Pethő, A., Tichy, R.F.: On the Diophantine equation G n (x) = Gm(P(x)): Higher-order recurrences. Trans. Am. Math. Soc. 355, 4657–4681 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Schinzel, A.: Polynomials with Special Regard to Reducibility. Cambridge University Press, Cambridge (2000)Google Scholar
  11. 11.
    Schmidt, W.M.: The zero multiplicity of linear recurrence sequences. Acta Math. 182, 243–282 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Schmidt, W.M.: Zeros of linear recurrence sequences. Publ. Math. (Debrecen) 56, 609–630 (2000)MATHMathSciNetGoogle Scholar
  13. 13.
    Shorey, T.N., Tijdeman, R.: Exponential Diophantine Equations. Cambridge University Press, Cambridge (1986)Google Scholar
  14. 14.
    Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Heidelberg (1993)Google Scholar
  15. 15.
    Zannier, U.: On the integer solutions of exponential equations in function fields. Ann. Inst. Fourier 54, 849–874 (2004)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Clemens Fuchs
    • 1
  • Attila Pethő
    • 2
    • 3
  • Robert F. Tichy
    • 4
  1. 1.Departement MathematikETH ZürichZürichSwitzerland
  2. 2.Faculty of InformaticsUniversity of DebrecenDebrecenHungary
  3. 3.Number Theory Research GroupHungarian Academy of SciencesDebrecenHungary
  4. 4.Institut für Analysis und Computational Number TheoryGrazAustria

Personalised recommendations