Advertisement

Abstract

The medicinal activities of plants are generally due to the secondary metabolites (1) which often occur as glycosides of steroids, terpenoids, phenols etc. Saponins are a group of naturally occurring plant glycosides, characterized by their strong foam-forming properties in aqueous solution. The cardiac glycosides also possess this, property but are classified separately because of their specific biological activity. Unlike the cardiac glycosides, saponins generally do not affect the heart. These are classified as steroid or triterpenoid saponins depending on the nature of the aglycone. Steroidal glycosides are naturally occurring sugar conjugates of C27 steroidal compounds. The aglycone of a steroid saponin is usually a spirostanol or a furostanol. The glycone parts of these compounds are mostly oligosaccharides, arranged either in a linear or branched fashion, attached to hydroxyl groups through an acetal linkage (2, 3). Another class of saponins, the basic steroid saponins, contain nitrogen analogues of steroid sapogenins as aglycones.

Keywords

Underground Part Triterpenoid Saponin Steroidal Saponin Steroidal Glycoside Steroidal Sapogenin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Williams DH, Stone MJ, Hauck PR, Rahman SK (1989) Why Are Secondary Metabolites (Natural Products) Biosynthesized? J Nat Prod 52: 1189Google Scholar
  2. 2.
    Hardman R (1987) Recent Developments in our Knowledge of Steroids. Planta Med 53: 233Google Scholar
  3. 3.
    Hostettmann K, Marston A (1995) Chemistry and Pharmacology of Natural Products: Saponins, p. 1. Cambridge University Press, Cambridge, UKGoogle Scholar
  4. 4.
    Kemertelidze ÉP, Pkheidze TA (1972) Tigogenin from Yucca gloriosa, A Possible Raw Material for the Synthesis of Steroid Hormonal Preparations. Pharm Chem J 6: 795Google Scholar
  5. 5.
    Mirkin G (1991) Estrogen in Yams. J Amer Med Assoc 265: 912Google Scholar
  6. 6.
    Djerassi C (1992) Drugs from Third World Plants: The Future. Science 258: 203Google Scholar
  7. 7.
    Ramberg J, Nugent S (2002) History and Uses of Dioscorea as a Food and Herbal Medicine. Glyco Sci Nutri 3: 1Google Scholar
  8. 8.
    Marston A, Hostettmann K (1985) Review Article No. 6. Plant Molluscicides. Phytochemistry 24: 639Google Scholar
  9. 9.
    Mimaki Y, Kuroda M, Fukasawa T, Sashida Y (1999) Steroidal Glycosides from the Bulbs of Allium jesdianum. J Nat Prod 62: 194Google Scholar
  10. 10.
    Miyakoshi M, Tamura Y, Masuda H, Mizutani K, Tanaka O, Ikeda T, Ohtani K, Kasai R, Yamasaki K (2000) Antiyeast Steroidal Saponins from Yucca schidigera (Mohave Yucca), A New Anti-Food-Deteriorating Agent. J Nat Prod 63: 332Google Scholar
  11. 11.
    Mimaki Y, Yokosuka A, Kuroda M, Sashida Y (2001) Cytotoxic Activities and Structure-Cytotoxic Relationships of Steroidal Saponins. Biol Pharm Bull 24: 1286Google Scholar
  12. 12.
    Křen V, Martinková L (2001) Glycosides in Medicine: The Role of Glycosidic Residue in Biological Activity. Current Med Chem 8: 1313Google Scholar
  13. 13.
    Francis G, Kerem Z, Makkar HPS, Becker K (2002) The Biological Action of Saponins in Animal Systems: A Review. Br J Nutri 88: 587Google Scholar
  14. 14.
    Kashibuchi N, Matsubara K, Kitada Y, Suzuki H (1996) Scalp Moisturizer and External Skin Preparation. US Patent No. 5565207Google Scholar
  15. 15.
    Tschesche R, Wulff G (1973) Chemie und biologie der Saponine. In: Herz W, Grisebach H, Kirby GW (eds.) Fortschr Chem Organ Naturstoffe, Vol. 30, p. 461. Springer, Wien New YorkGoogle Scholar
  16. 16.
    Elks J (1971) Steroid Saponins and Sapogenins. In: Coffey S (ed.) Rodd’s Chemistry of Carbon Compounds, 2nd Edn, Vol. IIE, p. 1 Elsevier, AmsterdamGoogle Scholar
  17. 17.
    Elks J (1974) In: Ansell MF (ed.) Rodd’s Chemistry of Carbon Compounds (Supplement to the 2nd Edn), Vol. 2D, p. 205. Elsevier, AmsterdamGoogle Scholar
  18. 18.
    Takeda K (1972) In: Reinhold L, Liwschitz Y (eds.) Progress in Phytochemistry, Vol. 4, p. 287. Interscience, LondonGoogle Scholar
  19. 19.
    Mahato SB, Ganguly AN, Sahu NP (1982) Steroid Saponins. Phytochemistry 21: 959Google Scholar
  20. 20.
    Singh SB, Thakur RS (1983) Recent Advances in the Chemistry of Steroidal Saponins and Their Genins. J Sci Industr Res 42: 319Google Scholar
  21. 21.
    Voigt G, Hiller K (1987) Advances in the Chemistry and Biology of the Steroid Saponins. Scientia Pharmaceutica 55: 201Google Scholar
  22. 22.
    Yang Z, Xiao Z (1989) Recent Advances in Chemical Research of Steroidal Saponins (in Chinese). Zhongguo Yaoxue Zazhi 24: 10Google Scholar
  23. 23.
    Hong J, Jia Z (1995) Recent Progress in Steroidal Saponins (in Chinese). Tianran Chanwu Yanjiu Yu Kaifa 7: 60Google Scholar
  24. 24.
    Yves S, Baissac Y, Leconte O, Petit P, Ribes G (1996) Steroid Saponins from Fenugreek and Some of Their Biological Properties. Adv Exp Med Biol 405: 37Google Scholar
  25. 25.
    Mimaki Y, Sashida Y (1996) Steroidal Saponins from the Liliaceae Plants and Their Biological Activities. Adv Exp Med Biol 404: 101Google Scholar
  26. 26.
    Yang C-R, Li X-C (1996) Bioactive Triterpenoid and Steroid Saponins from Medicinal Plants in Southwest China. Adv Exp Med Biol 404: 225Google Scholar
  27. 27.
    Kintia PK (1996) Chemistry and Biological Activity of Steroid Saponins from Moldovian Plants. Adv Exp Med Biol 404: 309Google Scholar
  28. 28.
    Peng JP, Yao XS (1996) 19 New Steroidal Saponins from Allium Plants. Adv Exp Med Biol 404: 511Google Scholar
  29. 29.
    Zhang JB, Yu B, Hui YZ (2000) Recent Progress in Research of Furostanol Saponins. Youji Huaxue 20: 663Google Scholar
  30. 30.
    Sun Q, Yong J, Zhao Y (2002) Steroid Saponins with Biological Activities. Zhongcaoyao 33: 276Google Scholar
  31. 31.
    Agrawal PK (1996) A Systematic Approach for the Determination of the Molecular Structure of Steroid Saponins. Adv Exp Med Biol 405: 299Google Scholar
  32. 32.
    Agrawal PK, Jain DC, Pathak AK (1995) NMR Spectral Investigation. Part 37. NMR Spectroscopy of Steroidal Sapogenins and Steroidal Saponins: An Update. Mag Reson Chem 33: 923Google Scholar
  33. 33.
    Mahato SB, Sahu NP, Pal BC, Chakravarti RN (1977) Constitution of New Steroidal Saponins Isolated from Kallstroemia pubescens. Indian J Chem 15B: 445Google Scholar
  34. 34.
    Mahato SB, Sahu NP, Pal BC (1978) New Steroidal Saponins from Dioscorea floribunda: Structures of Floribundasaponins C, D, E and F. Indian J Chem 16B: 350Google Scholar
  35. 35.
    Mandal D, Banerjee S, Mondal NB, Chakravarty AK, Sahu NP (2006) Steroidal Saponins from the Fruits of Asparagus racemosus. Phytochemistry 67: 1316Google Scholar
  36. 36.
    Ohtsuki T, Koyano T, Kowithayakorn T, Sakai S, Kawahara N, Goda Y, Yamaguchi N, Ishibashi M (2004) New Chlorogenin Hexasaccharide Isolated from Agave fourcroydes with Cytotoxic and Cell Inhibitory Activities. Bioorg Med Chem 12: 3841Google Scholar
  37. 37.
    Pettit GR, Zhang Q, Pinilla V, Hoffmann H, Knight JC, Doubek DL, Chapuis J-C, Pettit RK, Schmidt JM (2005) Antineoplastic Agents. 534. Isolation and Structure of Sansevistatins 1 and 2 from the African Sansevieria ehrenbergii. J Nat Prod 68: 729Google Scholar
  38. 38.
    Sautour M, Miyamoto T, Lacaille-Dubois M-A (2005) Steroidal Saponins from Smilax medica and Their Antifungal Activity. J Nat Prod 68: 1489Google Scholar
  39. 39.
    Yoshimitsu H, Nishida M, Nohara T (2003) Steroidal Glycosides from the Fruits of Solanum abutiloides. Phytochemistry 64: 1361Google Scholar
  40. 40.
    Zhang J, Ma B, Kang L, Yu H, Yang Y, Yan X, Dong F (2006) Furostanol Saponins from the Fresh Rhizomes of Polygonatum kingianum. Chem Pharm Bull 54: 931Google Scholar
  41. 41.
    Marker RE, Lopez J (1947) Steroidal Sapogenins, No. 165. Structure of the Sapogenin Glycosides. J Amer Chem Soc 69: 2389Google Scholar
  42. 42.
    Fieser L, Fieser M (1959) Steroids, p. 832. Reinhold, New YorkGoogle Scholar
  43. 43.
    Nohara T, Miyahara K, Kawasaki T (1975) Steroid Saponins and Sapogenins of Underground Part of Trillium kamtschaticum Pall. II. Pennogenin and Kryptogenin 3-O-Glycosides and Related Compounds. Chem Pharm Bull 23: 872Google Scholar
  44. 44.
    Stahl E (1962) Dünnschicht-Chromatographie, pp 498, 503. Springer, BerlinGoogle Scholar
  45. 45.
    Marker RE, Turner DL (1940) The Oxidation of Pregnane Triols. J Amer Chem Soc 62: 2540Google Scholar
  46. 46.
    Nohara T, Miyahara K, Komori T, Kawasaki T (1975) Structure of Novel-type Steroid Glycoside. Tetrahedron Lett 49: 4381Google Scholar
  47. 47.
    Nohara T, Komori T, Kawasaki T (1980) Steroid Saponins and Sapogenins of Underground Parts of Trillium kamtschaticum Pall. III. On the Structure of Novel Type of Steroid Glycoside, Trillenoside A, An 18-Norspirostanol Oligoside. Chem Pharm Bull 28: 1437Google Scholar
  48. 48.
    Fukuda N, Imamura N, Saito E, Nohara T, Kawasaki T (1981) Steroid Saponins and Sapogenins of Underground Parts of Trillium kamtschaticum Pall. IV. Additional Oligoglycosides of 18-Norspirostane Derivatives and Other Steroidal Constituents. Chem Pharm Bull 29: 325Google Scholar
  49. 49.
    Ono M, Yanai Y, Ikeda T, Okawa M, Nohara T (2003) Steroids from Underground Parts of Trillium kamtschaticum. Chem Pharm Bull 51: 1325Google Scholar
  50. 50.
    Nakano K, Nohara T, Tomimatsu T, Kawasaki T (1982) A Novel 18-Norspirostanol Bisdesmoside from Trillium tschonoskii.J Chem Soc Chem Comm: 789Google Scholar
  51. 51.
    Nakano K, Nohara T, Tomimatsu T, Kawasaki T (1983) 18-Norspirostanol Derivatives from Trillium tschonoskii. Phytochemistry 22: 1047Google Scholar
  52. 52.
    Ono M, Hamada T, Nohara T (1986) An 18-Norspirostanol Glycoside from Trillium tschonoskii. Phytochemistry 25: 544Google Scholar
  53. 53.
    Nohara T, Ito Y, Seike H, Komori T, Moriyama M, Gomita Y, Kawasaki T (1982) Study of the Constituents of Paris quadrifolia L. Chem Pharm Bull 30: 1851Google Scholar
  54. 54.
    Yokosuka A, Mimaki Y, Sashida Y (2002) Four New 3,5-Cyclosteroidal Saponins from Dracaena surculosa. Chem Pharm Bull 50: 992Google Scholar
  55. 55.
    Becker RC, Bianchi E, Cole JR (1972) A Phytochemical Investigation of Yucca schottii (Liliaceae). J Pharm Sci 61: 1665Google Scholar
  56. 56.
    Amoros M, Girre RL (1987) Structure of Two Antiviral Triterpene Saponins from Anagallis arvensis. Phytochemistry 26: 787Google Scholar
  57. 57.
    Meselhy MR, Aboutabl EA (1997) Hopane-Type Saponins from Polycarpon succulentum Growing in Egypt. Phytochemistry 44: 925Google Scholar
  58. 58.
    Meselhy MR (1998) Hopane-Type Saponins from Polycarpon succulentum. Phytochemistry 48: 1415Google Scholar
  59. 59.
    Krider MM, Branaman JR, Wall ME (1955) Steroidal sapogenins XVIII. Partial Hydrolysis of Steroidal Saponins of Yucca schidigera. J Amer Chem Soc 77: 1238Google Scholar
  60. 60.
    Krokhmalyuk VV, Kintya PK (1977) Steroid Saponins X. Glycosides of Allium narcissiflorum: The Structure of Glycosides A and B. Chem Nat Comp 12: 46Google Scholar
  61. 61.
    Mahato SB, Sahu NP, Ganguly AN (1981) Steroidal Saponins from Dioscorea floribunda: Structures of Floribundasaponins A and B. Phytochemistry 20: 1943Google Scholar
  62. 62.
    Mimaki Y, Kanmoto T, Sashida Y, Nishino A, Satomi Y, Nishino H (1996) Steroidal Saponins from the Underground Parts of Chlorophytum comosum and Their Inhibitory Activity on Tumor Promoter-Induced Phospholipid Metabolism of Hela Cells. Phytochemistry 41: 1405Google Scholar
  63. 63.
    Mimaki Y, Kuroda M, Kameyama A, Yokosuka A, Sashida Y (1998) Steroidal Saponins from the Underground Parts of Ruscus aculeatus and Their Cytostatic Activity on HL-60 Cells. Phytochemistry 48: 485Google Scholar
  64. 64.
    Sahu NP, Koike K, Banerjee S, Achari B, Nikaido T (2001) Triterpenoid Saponins from Mollugo spergula. Phytochemistry 58: 1177Google Scholar
  65. 65.
    Mimaki Y, Kuroda M, Kameyama A, Yokosuka A, Sashida Y (1998) New Steroidal Constituents of the Underground Parts of Ruscus aculeatus and Their Cytostatic Activity on HL-60 Cells. Chem Pharm Bull 46: 298Google Scholar
  66. 66.
    Pocsi I, Kiss L, Hughes MA, Nanasi P (1989) Kinetic Investigation of the Substrate Specificity of the Cyanogenic-β-glucosidase (Linamarase) of White Clover. Arch Biochem Biophys 272: 496Google Scholar
  67. 67.
    Poulton JE (1990) Cyanogenesis in Plants. Plant Physiol 94: 401Google Scholar
  68. 68.
    Sue M, Ishihara A, Iwamura H (2000) Purification and Characterization of a β-Glucosidase from Rye (Secale cereale L.) Seedlings. Plant Science 155: 67Google Scholar
  69. 69.
    Hrmova M, Harvey AJ, Wang J, Shirley NJ, Jones GP, Stone BA, Hoj PB, Fincher GB (1996) Barley β-d-Glucan Exohydrolase with β-d-Glucosidase Activity. Purification, Characterization, and Determination of Primary Structure from a cDNA Clone. J Biol Chem 271: 5277Google Scholar
  70. 70.
    Akiyama T, Kaku H, Shibuya NA (1998) Cell Wall Bound β-Glucosidase from Germinated Rice: Purification and Properties. Phytochemistry 48: 49Google Scholar
  71. 71.
    Svasti J, Srisomsap C, Techasakul S, Surarit R (1999) Dalchochinin-8′-O-β-d-Glucoside and Its β-Glucosidase Enzyme from Dalbergia cochinchinensis. Phytochemistry 50: 739Google Scholar
  72. 72.
    Nisius A (1988) The Stromacentre in Avena Plastids: An Aggregation of β-Glucosidase Responsible for the Activation of Oat-Leaf Saponins. Planta 173: 474Google Scholar
  73. 73.
    Gus-Mayer S, Brunner H, Schneider-Poetsch HA, Rüdiger W (1994) Avenacosidase from Oat: Purification, Sequence Analysis and Biochemical Characterization of New Member of the BGA Family of β-Glucosidases. Plant Mol Biol 26: 909Google Scholar
  74. 74.
    Inoue K, Ebizuka Y (1996) Purification and Characterization of Furostanol Glycoside 26-O-Glucosidase from Costus speciosus Rhizomes. FEBS Lett 378: 157Google Scholar
  75. 75.
    Arthan D, Kittakoop P, Esen A, Svasti J (2006) Furostanol Glycoside 26-O-Glucosidase from the Leaves of Solanum torvum. Phytochemistry 67: 27Google Scholar
  76. 76.
    Arthan D, Svasti J, Kittakoop P, Pittayakhachonwut D, Tanticharoen M, Thebtaranonth Y (2002) Antiviral Isoflavonoid Sulfate and Steroidal Glycosides from the Fruits of Solanum torvum. Phytochemistry 59: 459Google Scholar
  77. 77.
    Vollerner YS, Abdullaev ND, Gorovits MB, Abubakirov NK (1984) Steroid Saponins and Sapogenins of Allium. XIX. The Structure of Karatavigenin C. Chem Nat Comp 19: 699Google Scholar
  78. 78.
    Kintya PK, Stamova AI, Bakinovskii LB, Krokhmalyuk VV (1978) Steroid Glycosides (XXI). The Structure of Polygonatoside E′ and Protopolygonatoside E′ from the Leaves of Polygonatum latifolium. Chem Nat Comp 14: 290Google Scholar
  79. 79.
    Li XC, Yang CR, Matsuura H, Kasai R, Yamasaki K (1993) Steroidal Glycosides from Polygonatum prattil. Phytochemistry 33: 465Google Scholar
  80. 80.
    Son KH, Do JC (1990) Steroidal Saponins from the Rhizomes of Polygonatum sibiricum. J Nat Prod 53: 333Google Scholar
  81. 81.
    Mimaki Y, Kuroda M, Fukasawa T, Sashida Y (1999) Steroidal Saponins from the Bulbs of Allium karataviense. Chem Pharm Bull 47: 738Google Scholar
  82. 82.
    Mackie AM, Turner AB (1970) Partial Characterization of a Biologically Active Steroid Glycoside from the Starfish Marthasterias glacialis. Biochem J 117: 543Google Scholar
  83. 83.
    Smith F, Unrau AM (1959) On the Presence of 1 → 6 Linkages in Laminarin. Chem Ind 881Google Scholar
  84. 84.
    Goldstein IJ, Hay GW, Lewis BA, Smith F (1965). In: Whistler HL (ed.) Methods in Carbohydrate Chemistyr, Vol. 5, p. 361 Academic Press, New YorkGoogle Scholar
  85. 85.
    Plock A, Beyer G, Hiller K, Gründemann E, Krause E, Nimtz M, Wray V (2001) Application of MS and NMR to the Structure Elucidation of Complex Sugar Moieties of Natural Products: Exemplified by the Steroidal Saponin from Yucca filamentosa L. Phytochemistry 57: 489Google Scholar
  86. 86.
    Hayashi K, Iida I, Nakao Y, Kaneko Y (1988) Four Pregnane Glycosides, Boucerosides AI, AII, BI, and BIII from Boucerosia aucheriana. Phytochemistry 27: 3919Google Scholar
  87. 87.
    Tsukamoto S, Hayashi K, Kaneko K, Mitsuhashi H (1986) Studies on the Constituents of Asclepiadaceae Plants. LXV. The Optical Resolution of d-and l-Cymaroses. Chem Pharm Bull 34: 3130Google Scholar
  88. 88.
    König WA, Benecke I, Bretting H (1981) Gas Chromatographic Separation of Carbohydrate Enantiomers on a New Chiral Stationary Phase. Angew Chem Int Ed Engl 20: 693Google Scholar
  89. 89.
    Chang M, Meyers HV, Nakanishi K, Ojika M, Park JH, Park MH, Takeda R, Vazquez JT, Wiesler WT (1989) Microscale Structure Determination of Oligosaccharides by the Exciton Chirality Method. Pure Appl Chem 61: 1193Google Scholar
  90. 90.
    Klyne W (1950) The Configuration of the Anomeric Carbon Atoms in Some Cardiac Glycosides. Biochem J 47: xliGoogle Scholar
  91. 91.
    Mahato SB, Sahu NP, Ganguly AN, Miyahara K, Kawasaki T, Tanaka O (1981) Steroidal Glycosides of Tribulus terrestris Linn. J Chem Soc Perkin Trans I: 2405Google Scholar
  92. 92.
    Eggert H, Djerassi C (1975) 13C NMR Spectra of Sapogenins. Tetrahedron Lett 16: 3635Google Scholar
  93. 93.
    Mahato SB, Sahu NP, Ganguly AN, Kasai YR, Tanaka O (1980) Steroidal Alkaloids from Solanum khasianum: Application of 13C NMR Spectroscopy to Their Structural Elucidation. Phytochemistry 19: 2017Google Scholar
  94. 94.
    Seo S, Tomita Y, Tori K, Yoshimura Y (1978) Determination of the Absolute Configuration of a Secondary Hydroxy Group in a Chiral Secondary Alcohol Using Glycosidation Shifts in Carbon-13 Nuclear Magnetic Resonance Spectroscopy. J Amer Chem Soc 100: 3331Google Scholar
  95. 95.
    Stothers JB (1972) Carbon-13 NMR Spectroscopy. Academic Press, New YorkGoogle Scholar
  96. 96.
    Kasai R, Okihara M, Asakawa J, Mizutani K, Tanaka O (1979) 13C NMR Study of α-and β-Anomeric Pairs of d-Mannopyranosides and l-Rhamnopyranosides. Tetrahedron 35: 1427Google Scholar
  97. 97.
    Kasai R, Suzuo M, Asakawa J, Tanaka O (1977) Carbon-13 Chemical Shifts of Isoprenoid-β-d-glucopyranosides and β-d-Mannopyranosides. Stereochemical Influences of Aglycone Alcohols. Tetrahedron Lett 18: 175Google Scholar
  98. 98.
    Tori K, Seo S, Oshimura Y, Arita H, Tomita Y (1977) Glycosidation Shifts in Carbon-13 NMR Spectroscopy: Carbon-13 Signal Shifts from Aglycone and Glucose to Glucoside. Tetrahedron Lett 18: 179Google Scholar
  99. 99.
    Massiot G, Lavaud C, Guillaume D, Le Men-Olivier L, Van-Binst G (1986) Identification and Sequencing of Sugars in Saponins Using 2D 1HNMR Spectroscopy. J Chem Soc Chem Comm: 1485Google Scholar
  100. 100.
    Wolfender J-L, Rodriguez S, Hostettmann K (1998) Liquid Chromatography Coupled to Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy for the Screening of Plant Constituents. J Chromatography A 794: 299Google Scholar
  101. 101.
    Williams DH, Bradley G, Bojesen G, Santokaran S, Taylor LCE (1981) Fast Atom Bombardment Mass Spectrometry: A Powerful Technique for the Study of Polar Molecules. J Amer Chem Soc 103: 5700Google Scholar
  102. 102.
    Fenselau C (1984) Fast Atom Bombardment and Middle Molecule Mass Spectrometry. J Nat Prod 47: 215Google Scholar
  103. 103.
    Zhou ZL, Aquino R, De Simone F, Dini A, Schettino O, Pizza C (1988) Oligofurostanosides from Asparagus cochinchinensis. Planta Med 54: 344Google Scholar
  104. 104.
    Inoue T, Mikaki Y, Sashida Y, Nishino A, Satomi Y, Nishino H (1995) Steroidal Glycosides from Allium macleanii and A. senescens, and Their Inhibitory Activity on Tumour Promoter-Induced Phospholipid Metabolism of Hela Cells. Phytochemistry 40: 521Google Scholar
  105. 105.
    Yan W, Ohtani K, Kasai R, Yamasaki K (1996) Steroidal Saponins from Fruits of Tribulus terrestris. Phytochemistry 42: 1417Google Scholar
  106. 106.
    Debella A, Haslinger E, Kunert O, Michi C, Abebe D (1999) Steroidal Saponins from Asparagus africanus. Phytochemistry 51: 1069Google Scholar
  107. 107.
    Lattimer RP, Schulten HR (1989) Field Ionization and Field Desorption Mass Spectrometry: Past, Present and Future. Anal Chem 61 1201AGoogle Scholar
  108. 108.
    Komori T, Kawasaki T, Schulten HR (2005) Field Desorption and Fast Atom Bombardment Mass Spectrometry of Biologically Active Natural Oligoglycosides. Mass Spectro Reviews 4: 255Google Scholar
  109. 109.
    Sundqvist B, Roepstorff P, Fohlman J, Hedin A, Hakansson P, Kamensky M, Lindberg M, Salehpoour M, Save G (1984) Molecular Weight Determinations of Proteins by Californium Plasma Desorption Mass Spectrometry. Science 226: 696Google Scholar
  110. 110.
    Pilipenko VV, Sukhodub LF, Aksyonov SA, Kalinkevich AN, Kintia PK (2000) 252Cf Plasma Desorption Mass Spectrometric Study of Interactions of Steroid Glycosides with Amino Acids. Rapid Commun Mass Spectrom 14: 819Google Scholar
  111. 111.
    Karas M, Hillenkamp F (1988) Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal Chem 60: 2299Google Scholar
  112. 112.
    Liu SY, Cui M, Liu ZQ, Song FR (2004) Structural Analysis of Saponins from Medicinal Herbs Using Electrospray Ionization Tandem Mass Spectrometry. J Amer Soc Mass Spectrom 15: 133Google Scholar
  113. 113.
    McLafferty FW, Fridriksson EK, Horn DM, Lewis MA, Zubarev RA (1999) Techview: Biochemistry, Biomolecules Mass Spectrometry. Science 284: 1289Google Scholar
  114. 114.
    Wilm M, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T, Mann M (1996) Femtomole Sequencing of Proteins from Polyacrylamide Gels by Nano-Electrospray Mass Spectrometry. Nature 379: 466Google Scholar
  115. 115.
    Shen X, Perreault H (1999) Electrospray Ionization Mass Spectrometry of 1-Phenyl-3-methyl-5-pyrazolone Derivatives of Neutral and N-Acetylated Oligosaccharides. J Mass Spectrom 34: 502Google Scholar
  116. 116.
    Chai W, Piskarev V, Lawson AM (2001) Negative-Ion Electrospray Mass Spectrometry of Neutral Underivatized Oligosaccharides. Anal Chem 73: 651Google Scholar
  117. 117.
    Putalun W, Tanaka H, Muranaka T, Shoyama Y (2002) Determination of Aculeatisides Based on Immunoassay Using a Polyclonal Antibody Against Aculeatiside A. Analyst 127: 1328Google Scholar
  118. 118.
    Fang SP, Hao CY, Sun WX, Liu ZQ, Liu SY (1998) Rapid Analysis of Steroidal Saponin Mixture Using Electrospray Ionization Mass Spectrometry Combined with Sequential Tandem Mass Spectrometry. Rapid Commun Mass Spectrom 12: 589Google Scholar
  119. 119.
    Fang SP, Hao CY, Liu ZQ, Song FR, Liu SY (1999) Application of Electrospray Ionization Mass Spectrometry Combined with Sequential Tandem Mass Spectrometry Techniques for the Profiling of Steroidal Saponin Mixture Extracted from Tribulus terrestris. Planta Med 65: 68Google Scholar
  120. 120.
    Cui M, Sun WX, Song FR, Liu ZQ, Liu SY (1999) Multi-Stage Mass Spectrometric Studies of Triterpenoid Saponins in Crude Extracts from Acanthopanax senticosus Harms. Rapid Commun Mass Spectrom 13: 873Google Scholar
  121. 121.
    Van Setten DC, Zomer G, Van DeWerken G, Viertz EJHJ, Leeflang BR, Kamerling JP (2000) Ion Trap Multiple-Stage Tandem Mass Spectrometry as a Pre-NMR Tool in the Structure Elucidation of Saponins. Phytochem Anal 11: 190Google Scholar
  122. 122.
    Guo MQ, Song FR, Bai Y, Liu ZQ, Liu SY (2002) Rapid Analysis of a Triterpenoid Saponin Mixture from Plant Extracts by Electrospray Ionization Multi-Stage Tandem Mass Spectrometry (ESI-MS). Anal Sci 18: 481Google Scholar
  123. 123.
    Song FR, Cui M, Liu ZQ, Yu B, Liu SY (2004) Multiple-Stage Tandem Mass Spectrometry for Differentiation of Isomeric Saponins. Rapid Commun Mass Spectrom 18: 2241Google Scholar
  124. 124.
    Brobera S, Nord LI, Kenne L (2004) Oligosaccharide Sequences in Quillaja Saponins by Electrospray Ionization Ion Multi-Stage Mass Spectrometry. J Mass Spectrom 39: 691Google Scholar
  125. 125.
    Li R, Zhou Y, Wu Z, Ding L (2006) ESI-Q TOF-MS/MS and APCI-IT-MS/MS Analysis of Steroid Saponins from the Rhizomes of Dioscorea panthaica. J Mass Spectrom 41: 1Google Scholar
  126. 126.
    Liang F, Li L-J, Abliz Z, Yang Y-C, Shi J-G (2002) Structural Characterization of Steroidal Saponins by Electrospray Ionization and Fast-Atom Bombardment Tandem Mass Spectrometry. Rapid Commun Mass Spectrom 16: 1168Google Scholar
  127. 127.
    Agrawal PK (2003) Spectral Assignments and Reference Data: 25R/25S Stereochemistry of Spirostane-Type Steroidal Sapogenins and Steroidal Saponins via Chemical Shift of Geminal Protons of Ring-F. Magn Reson Chem 41: 965Google Scholar
  128. 128.
    Agrawal PK (2005) Assigning Stereodiversity of the 27-Me Group of Furostane-Type Steroidal Saponins via NMR Chemical Shifts. Steroids 70: 715Google Scholar
  129. 129.
    Ohtsuki T, Sato M, Koyano T, Kowithayakorn T, Kawahara N, Goda Y, Ishibashi M (2006) Steroidal Saponins from Calamus insignis, and Their Cell Growth and Cell Cycle Inhibitory Activities. Bioorg Med Chem 14: 659Google Scholar
  130. 130.
    Haraguchi M, Mimaki Y, Motidome M, Morita H, Takeya K, Itokawa H, Yokosuka A, Sashida Y (2000) Steroidal Saponins from the Leaves of Cestrum sendtenerianum. Phytochemistry 55: 715Google Scholar
  131. 131.
    Sang S, Mao S, Lao A, Chan Z, Ho C-T (2001) Four New Steroidal Saponins from the Seeds of Allium tuberosum. J Agric Food Chem 49: 1475Google Scholar
  132. 132.
    Agrawal PK (1992) NMR Spectroscopy in the Structural Elucidation of Oligosaccharides and Glycosides. Phytochemistry 31: 3307Google Scholar
  133. 133.
    Sahu NP, Koike K, Jia Z, Nikaido T (1995) Novel Triterpenoid Saponins from Mimusops elengi. Tetrahedron 51: 13435Google Scholar
  134. 134.
    Doddwell DM, Pegg DT, Bendall MR (1982) Distortionless Enhancement of NMR Signals by Polarization Transfer. J Magn Reson 48: 323Google Scholar
  135. 135.
    Jin J-M, Zhang Y-J, Yang C-R (2004) Spirostanol and Furostanol Glycosides from the Fresh Tubers of Polianthes tuberosa. J Nat Prod 67: 5Google Scholar
  136. 136.
    Bedir E, Khan IA (2000) New Steroidal Glycosides from the Fruits of Tribulus terrestris. J Nat Prod 63: 1699Google Scholar
  137. 137.
    Yokosuka A, Mimaki Y, Sashida Y (2002) Steroidal and Pregnane Glycosides from the Rhizomes of Tacca chantrieri. J Nat Prod 65: 1293Google Scholar
  138. 138.
    Agrawal PK, Bunsawansong P, Morris GA (1997) Complete Assignment of the 1H and 13C NMR Spectra of Steroidal Sapogenins: Smilagenin and Sarsasapogenin. Magn Reson Chem 35: 441Google Scholar
  139. 139.
    Braunschweiler L, Ernst RR (1983) Coherence Transfer by Isotropic Mixing: Application to Proton Correlation Spectroscopy. J Magn Reson 53: 521Google Scholar
  140. 140.
    Kessler H, Gehrke M, Griesinger C (1988) Two-Dimensional NMR Spectroscopy: Background and Overview of the Experiments. Angew Chem Int Ed Engl 27: 490Google Scholar
  141. 141.
    Davis DG, Bax A (1985) Assignment of Complex 1H NMR Spectra via Two-Dimensional Homonuclear Hartmann-Hahn Spectroscopy. J Amer Chem Soc 107: 2820Google Scholar
  142. 142.
    Marx RS, Glaser J (2003) Spins Swing Like Pendulums Do: An Exact Classical Model for TOCSY Transfer in Systems of Three Isotropically Coupled Spins 1/2. J Magn Reson 164: 338Google Scholar
  143. 143.
    Bax A, Morris GA (1981) An Improved Method for Heteronuclear Chemical Shift Correlation by Two-Dimensional NMR. J Magn Reson 42: 501Google Scholar
  144. 144.
    Summers MF, Marzilli LG, Bax A (1986) Complete Proton and Carbon-13 Assignments of Coenzyme B12 Through the Use of New Two-Dimensional NMR Experiments. J Amer Chem Soc 108: 4285Google Scholar
  145. 145.
    Bax A, Summers MF (1986) Proton and Carbon-13 Assignments from Sensitivity-Enhanced Detection of Heteronuclear Multiple-Bond connectivity by 2D Multiple Quantum NMR. J Amer Chem Soc 108: 2093Google Scholar
  146. 146.
    Macura S, Ernst RR (1980) Elucidation of Cross Relaxation in Liquids by Two-Dimensional NMR Spectroscopy. Mol Phys 41: 95Google Scholar
  147. 147.
    Macura S, Huang Y, Suter D, Ernst RR (1981) Two-Dimensional Chemical Exchange and Cross-Relaxation Spectroscopy of Coupled Nuclear Spins. J Magn Reson 43: 259Google Scholar
  148. 148.
    Claridge TDW (1999) Correlations Through Space: The Nuclear Overhauser Effect. In: Baldwin JE, Williams RM (eds.) High-Resolution NMR Techniques in Organic Chemistry, Vol. 19, p. 277. Elsevier Science, Oxford, UKGoogle Scholar
  149. 149.
    D’Auria MV, Giannini C, Zampella A, Minale L, Deditus C, Roussakis C (1998) Crellastatin A: A Cytotoxic Bis-Steroid Sulfate from the Vanuatu Marine Sponge Crella sp. J Org Chem 63: 7382Google Scholar
  150. 150.
    Croasmun WR, Carlson RMK (1994) Steroidal Structural Analysis by Two-Dimensional NMR. In: Croasmun WR, Carlson RMK (eds.) Two-Dimensional NMR Spectroscopy Applications for Chemists and Biochemists, 2nd Edn, p. 785. Wiley-VCH, WeinheimGoogle Scholar
  151. 151.
    Bross-Walch N, Kühn T, Moskau D, Zerbe O (2005) Strategies and Tools for Structure Determination of Natural Products Using Modern Methods of NMR Spectroscopy. Chem Biodivers 2: 147Google Scholar
  152. 152.
    Rance M, Sørensen OW, Bodenhausen G, Wagner G, Ernst RR, Wüthrich K (1983) Improved Spectral Resolution in COSY NMR Spectra of Proteins via Double Quantum Filtering. Biochem Biophys Res Commun 117: 479Google Scholar
  153. 153.
    Vuister GW, DeWarrd P, Boelens R (1989) The Use of 3D NMR in Structural Studies of Oligosaccharides. J Amer Chem Soc 111: 772Google Scholar
  154. 154.
    Bock K, Pedersen C, Pedersen H (1984) Carbon-13 NMR Data for Oligosaccharides. Adv Carbohydr Chem Biochem 42: 193Google Scholar
  155. 155.
    Sahu NP, Achari B (2001) Advances in Structural Determination of Saponins and Terpenoid Glycosides. Curr Org Chem 5: 315Google Scholar
  156. 156.
    Bothner-By AA, Stephens RL, Lee J, Warren CD, Jeanloz RW (1984) Structure Determination of a Tetrasaccharide: Transient Nuclear Overhauser Effects in the Rotating Frame. J Amer Chem Soc 106: 811Google Scholar
  157. 157.
    Bax A, Davis DG (1985) Practical Aspects of Two-Dimensional Transverse NOE Spectroscopy. J Magn Reson 63: 207Google Scholar
  158. 158.
    Jia Z, Koike K, Nikaido T (1999) Saponarioside C, the First α-D-Galactose Containing Triterpenoid Saponin, and Five Related Compounds from Saponaria officinalis. J Nat Prod 62: 449Google Scholar
  159. 159.
    George AJ (1965) Legal Status and Toxicity of Saponins. Food Cosmet Toxicol 3: 85Google Scholar
  160. 160.
    El Izzi A, Benie T, Thieulant M-L, Le Men-Olivier L, Duval J (1992) Stimulation of LH Release from Cultured Pituitary Cells by Saponins of Petersianthus macrocarpus: A Permeabilising Effect. Planta Med 58: 229Google Scholar
  161. 161.
    Authi KS, Rao GHR, Evenden BJ, Crawford N (1988) Action of Guanosine 5′-(beta-thio)Diphosphate on Thrombin-Induced Activation and Calcium Mobilization in Saponin-Permeabilized and Intact Human Platelets. Biochem J 255: 885Google Scholar
  162. 162.
    Plock A, Sokolowska W, Presber W (2001) Application of Flow Cytometry and Microscopical Methods to Characterize the Effect of Herbal Drugs on Leishmania spp. Exp Parasitol 97: 1451Google Scholar
  163. 163.
    Kensil CR (1996) Saponins as Vaccine Adjuvants. Crit Rev Ther Drug 13: 1Google Scholar
  164. 164.
    Barr IG, Sjolander A, Cox JC (1998) ISCOMs and Other Saponin Based Adjuvants. Adv Drug Deli Reviews 32: 247Google Scholar
  165. 165.
    Sen S, Makkar HPS, Becker K (1998) Alfalfa Saponins and Their Implication in Animal Nutrition. J Agric Food Chem 46: 131Google Scholar
  166. 166.
    Yoshiki Y, Kudou S, Okubo K (1998) Relationship Between Chemical Structures and Biological Activities of Triterpenoid Saponins from Soybean (Review). Biosci Biotechnol Biochem 62: 2291Google Scholar
  167. 167.
    Křen V, Martinková L (2001) Glycosides in Medicine: The Role of Glycosidic Residue in Biological Activity. Curr Med Chem 8: 1313Google Scholar
  168. 168.
    Francis G, Kerem Z, Makkar HPS, Becker K (2002) The Biological Action of Saponins in Animal Systems: A Review. Brit J Nutr 88: 587Google Scholar
  169. 169.
    Mimaki Y, Kuroda M, Kameyama A, Yokosuka A, Sashida Y (1998) Steroidal Saponins from the Rhizomes of Hosta sieboldii and Their Cytostatic Activity on HL-60 Cells. Phytochemistry 48: 1361Google Scholar
  170. 170.
    Sargent JM, Taylor CG (1989) Appraisal of the MTT Assay as a Rapid Test of Chemo-Sensitivity in Acute Myeloid Leukaemia. Brit J Cancer 60: 206Google Scholar
  171. 171.
    Mimaki Y, Kuroda M, Fukasawa T, Sashida Y (1999) Steroidal Glycosides from the Bulbs of Allium jesdianum. J Nat Prod 62: 194Google Scholar
  172. 172.
    Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd M (1991) Feasibility of a High-Flux Anticancer Drug Screen Using a Divierse Panel of Cultured Human Tumor Cell Lines. J Natl Cancer Inst 83: 757Google Scholar
  173. 173.
    Mimaki Y, Yokosuka A, Sashida Y (2000) Steroidal Glycosides from the Aerial Parts of Polianthes tuberosa. J Nat Prod 63: 1519Google Scholar
  174. 174.
    Mimaki Y, Kuroda M, Ide A, Kameyama A, Yokosuka A, Sashida Y (1999) Steroidal Saponins from the Aerial Parts of Dracaena draco and Their Cytostatic Activity on HL-60 cells. Phytochemistry 50: 805Google Scholar
  175. 175.
    Nohara T, Miyahara K, Kawasaki T (1975) Steroid Saponins and Sapogenins of Underground Parts of Trillium kamtschaticum Pall. II. Pennogenin-and Kryptogenin 3-O-Glycosides and Related Compounds. Chem Pharm Bull 23: 872Google Scholar
  176. 176.
    Hu K, Yao X (2001) Methyl Protogracillin (NSC-698792): The Spectrum of Cytotoxicity Against 60 Human Cancer Cell Lines in the National Cancer Institute’s Anticancer Drug Screen Panel. Anticancer Drugs 12: 541Google Scholar
  177. 177.
    Hu K, Yao X (2003) The Cytotoxicity of Methyl Protoneogracillin (NSC-698793) and Gracillin (NSC-698787), Two Steroidal Saponins from the Rhizomes of Dioscorea collettii var. hypoglauca, Against Human Cancer Cells in vitro. Phytother Res 17: 620Google Scholar
  178. 178.
    Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinstein L, Plowman J, Boyd MR (1989) Display and Analysis of Patterns of Differential Activity of Drugs Against Human Tumor Cell Lines: Development of Mean Graph and COMPARE Algorithm. J Natl Cancer Inst 81: 1088Google Scholar
  179. 179.
    Weinstein JN, Myers TG, O’Connor PM, Friend SH, Fornace AJ Jr, Khon KW, Fojo T, Bates SE, Rubinstein LV, Anderson NL, Buolamwini JK, Van Osdol WW, Monks AP, Scudiero DA, Sausville EA, Zaharevitz DW, Bunow B, Viswanadhan VN, Johnson GS, Wittes RE, Paull KD (1997) An Information-Intensive Approach to the Molecular Pharmacology of Cancer. Science 275: 343Google Scholar
  180. 180.
    Mimaki Y, Watanabe K, Ando Y, Sakuma C, Sashida Y, Furuya S, Sakagami H (2001) Flavonol Glycosides and Steroidal Saponins from the Leaves of Cestrum nocturnum and Their Cytotoxicity. J Nat Prod 64: 17Google Scholar
  181. 181.
    Sata N, Matsunaga S, Fusetani N, Nishikawa H, Takamura S, Saito T (1998) New Antifungal and Cytotoxic Steroidal Saponins from the Bulbs of an Elephant Garlic Mutant. Biosci Biotechnol Biochem 62: 1904Google Scholar
  182. 182.
    Yokosuka A, Mimaki Y, Sashida Y (2002) Spirostanol Saponins from the Rhizomes of Tacca chanitrieri and Their Cytotoxic Activity. Phytochemistry 61: 73Google Scholar
  183. 183.
    Mimaki Y, Watanabe K, Sakagami H, Sashida Y (2002) Steroidal Glycosides from the Leaves of Cestrum nocturnum. J Nat Prod 65: 1863Google Scholar
  184. 184.
    Ahn K-J, Kim CY, Yoon K-D, Ryu MY, Cheong JH, Chin Y-W, Kim J (2000) Steroidal Saponins from the Rhizomes of Polygonatum sibiricum. J Nat Prod 69: 360Google Scholar
  185. 185.
    Kim G-S, Kim H-T, Seong J-D, Oh S-R, Lee C-O, Bang J-K, Seong N-S, Song K-S (2005) Cytotoxic Steroidal Saponins from the Rhizomes of Asparagus oligoclonos. J Nat Prod 68: 766Google Scholar
  186. 186.
    Carmichael J, Degraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of Tetrazolium-Based Semiautomated Colorimetric Assay: Assessment of Chemosensitivity Testing. Cancer Res 47: 936Google Scholar
  187. 187.
    Boyd MR (1997) Drug Development: Preclinical Screening, Clinical Trial and Approval. In Teicher B (ed.) Cancer Drug Discovery and Development, Vol. 2, p 23. Humana Press, Totowa, NJGoogle Scholar
  188. 188.
    Zhou X, He X, Wang G, Gao H, Zhou G, Ye W, Yao X (2006) Steroidal Saponins from Solanum nigrum. J Nat Prod 69: 1158Google Scholar
  189. 189.
    Ikeda T, Tsumagari H, Honbu T, Nohara T (2003) Cytotoxic Activity of Steroidal Glycosides from Solanum Plants. Biol Pharm Bull 26: 1198Google Scholar
  190. 190.
    Kinjo M, Oka K, Naito S, Kohga S, Tanaka K, Oboshi S, Hayata Y, Yasumoto K (1979) Thromboplastic and Fibrinolytic Activities of Cultured Human Cancer Cell Lines. Brit J Cancer 39: 15Google Scholar
  191. 191.
    Brattain MG, Fine WD, Khaled FM, Thompson J, Brattain DE (1981) Heterogeneity of Malignant Cells from a Human Colonic Carcinoma. Cancer Res 41: 1751Google Scholar
  192. 192.
    Hernández JC, León F, Quintana J, Estévez F, Bermejo J (2004) Icogenin, a New Cytotoxic Steroidal Saponin Isolated from Dracaena draco. Bioorg Med Chem 12: 4423Google Scholar
  193. 193.
    Mosmann T (1983) Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J Immunol Methods 65: 55Google Scholar
  194. 194.
    Tewari M, Quan LT, O’Rourke K, Desnoyers S, David ZE, Guy RR, Poirier G, Salvesen GS, Dixit VM (1995) Yama/CPP. 32 β, A Mammalian Homolog of CED-3, is a CrmA Inhibitable Protease that Cleaves the Death Substrate Poly (ADP-ribose) Polymerase. Cell 81: 801Google Scholar
  195. 195.
    Germain M, Affar EB, D’Amours D, Dixit VM, Salvesen GS, Poirier GG (1999) Cleavage of Automodified Poly (ADP-ribose) Polymerase During Apoptosis. J Biol Chem 274: 28379Google Scholar
  196. 196.
    Tran QL, Tezuka Y, Banskota AH, Tran QK, Saiki I, Kadota S (2001) New Spirostanol Steroids and Steroidal Saponins from Roots and Rhizomes of Dracaena angustifolia and Their Antiproliferative Activity. J Nat Prod 64: 1127Google Scholar
  197. 197.
    Rubinstein LV, Shoemaker RH, Paull KD, Simon RM, Tosini S, Skehan P, Scudiero DA, Monks A, Boyd MR (1990) Comparison of in vitro Anticancer-Drug-Screening Data Generated with a Tetrazolium Assay versus a Protein Asay Against a Diverse Panel of Human Tumor Cell Lines. J Nat Cancer Inst 82: 1113Google Scholar
  198. 198.
    Dimoglo AS, Choban IN, Bersuker IB, Kintya PK, Balashoova NN (1985) Structure-Activity Correlations for the Antioxidant and Antifungal Properties of Steroid Glycosides. Bioorg Khim 11: 408Google Scholar
  199. 199.
    Imai S, Fujioka S, Murata E, Goto M, Kawasaki T, Yamauchi T (1967) Bioassay of Crude Drugs and Oriental Crude Drug Preparations. XXII. Search for Biologically Active Plant Ingredients by Means of Antimicrobial Tests. 4. Antifungal Activity of Dioscin and Related Compounds. Takeda Kenkyusho Nenpo 26: 76Google Scholar
  200. 200.
    Wolters B (1995) The Share of the Steroid Saponins in the Antibiotic Action of Solanum dulcumard. Planta Med 13: 189Google Scholar
  201. 201.
    Wolters B (1996) Antimicrobial Activity of Plant Steroids and Triterpenes. Planta Med 14: 392Google Scholar
  202. 202.
    Chen H, Xu Y, Jian Y, Wen H, Cao Y, Liu W, Zhang J (2003) Application of Tribulus terrestris Spirosteroidal Saponin to Prepare the Antifungal Medical Preparations. Faming Zhuanli Shenqing Gongkai Shuomingshu. China Patent 1428349Google Scholar
  203. 203.
    De Lucca AJ, Bland JM, Vigo CB, Selitrennikoff MCP (2001) Fungicidal Saponin, CAY-1, and Isolation Thereof from Capsicum Species Fruit. US Patent 6, 310,091Google Scholar
  204. 204.
    Magota H, Okubo K, Shimoyamada M, Suzuki M, Maruyama M (1991) Isolation of Steroidal Saponin as Antifungal Agent. Japan Patent 03048694Google Scholar
  205. 205.
    Sashida Y, Mitsumaki Y, Kuroda A, Takashi T, Sudo K (2001) Antifungal Steroid Saponin. Japan Patent 2001181296Google Scholar
  206. 206.
    Yang C-R, Zhang Y, Jacob MR, Khan SI, Zhang Y-J, Li Z-C (2006) Antifungal Activity of C-27 Steroidal Saponins. Antimicrob Agents Chemother 50: 1710Google Scholar
  207. 207.
    Zhang Y, Li H-Z, Zhang Y-J, Jacob MR, Khan SI, Li X-C, Yang C-R (2006) Atropurosides A-G, New Steroidal Saponins from Smilacina atropurpurea. Steroids 71: 712Google Scholar
  208. 208.
    NCCLS (2002) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard M-27-A2, 22 (15) National Committee on Clinical Laboratory Standards, Wayne, PAGoogle Scholar
  209. 209.
    NCLS (2002) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard M-38-A, 22 (16). National Committee on Clinical Laboratory Standards, Wayne, PAGoogle Scholar
  210. 210.
    Favel LA, Kemertelidze E, Benidze M, Fallague K, Regli P (2005) Antifungal Activity of Steroidal Glycosides from Yucca gloriosa. Phytother Res 19: 158Google Scholar
  211. 211.
    Miyakoshi M, Tamura Y, Masuda H, Mizutani K, Tanaka O, Ikeda T, Ohtani K, Kasai R, Yamasaki K (2000) Antiyeast Steroidal Saponins from Yucca schidigera (Mohave Yucca), a New Anti-Food-Deteriorating Agent. J Nat Prod 63: 332Google Scholar
  212. 212.
    Rahalison L, Hamburger M, Monod M, Hostettmann K (1994) Antifungal Tests in Phytochemical Investigations: Comparison of Bioautographic Methods Using Phytopathogenic and Human Pathogenic Fungi. Planta Med 60: 41Google Scholar
  213. 213.
    González M, Zamilpa A, Marquina S, Navarro V, Alvarez L (2004) Antimycotic Spirostanol Saponins from Solanum hispidum Leaves and Their Structure-Activity Relationships. J Nat Prod 67: 938Google Scholar
  214. 214.
    Zamilpa A, Tortoriello J, Navarro V, Delgado G, Alvarez L (2002) Five New Steroidal Saponins from Solanum chrysotrichu Leaves and Their Antimycotic Activity. J Nat Prod 65: 1815Google Scholar
  215. 215.
    Sautour M, Mitaine-Offer A-C, Miyamoto T, Dongmo A, Lacaille-Dubois MA (2004) Antifungal Steroid Saponins from Dioscorea cayenesis. Planta Med 70: 90Google Scholar
  216. 216.
    Sautour M, Mitaine-Offer A-C, Miyamoto T, Dongmo A, Lacaille-Dubois MA (2004) A New Steroidal Saponin from Dioscorea cayenensis. Chem Pharm Bull 52: 1353Google Scholar
  217. 217.
    Takechi M, Tanaka Y (1991) Structure-Activity Relationships of Synthetic Diosgenyl Monoglycosides. Phytochemistry 30: 2557Google Scholar
  218. 218.
    Lacaille-Dubois MA, Wagner H (1996) A Review of the Biological and Pharmacological Activities of Saponins. Phytomedicine 2: 363Google Scholar
  219. 219.
    Santos WR, Bernardo RR, Pecanha LMT, Palatnik M, Parent JP, De Sousa CBP (1997) Haemolytic Activities of Plant Saponins and Adjuvants. Effect of Periandra mediterranea Saponin on the Humoral Response to the FML Antigen of Leishmania donovani. Vaccine 15: 1024Google Scholar
  220. 220.
    Mendes TP, Silva GDM, Silva BPD, Parente JE (2004) A New Steroidal Saponin from Agave attenuata. Nat Prod Res 18: 183Google Scholar
  221. 221.
    Harris KF (1977) An Ingestion-Egestion Hypothesis of Noncirculative Virus Transmission. In: Harris KF, Maramorosch K (eds) Aphids as Virus Vectors, p. 165. Academic Press, New York.Google Scholar
  222. 222.
    Raman KV, Radcliffe EB (1992) Pest Aspects of Potato Productions. In: Harris P (ed.) The Potato Crop, 2nd Edn., p. 477. Chapman & Hall, LondonGoogle Scholar
  223. 223.
    Soulé S, Güntner C, Vázquez A, Argandona V, Moyna P, Ferreira F (2000) An Aphid Repellent Glycoside from Solanum laxum. Phytochemistry 55: 217Google Scholar
  224. 224.
    Harwood HJ, Chandler CE, Pellatin LD, Bangerter FW, Wilkins RW, Long CA, Cosgrove PG, Malinow MR, Marzetta CA, Pettini JL, Savoy YE, Mayne JT (1993) Pharmacologic Consequences of Cholesterol Absorption Inhibition: Alteration in Cholesterol Metabolism and Reduction in Plasma Cholesterol Concentration Induced by the Synthetic Saponin β-Tigogenin Cellobioside (CP-88818;Tiqueside). J Lipid Res 34: 377Google Scholar
  225. 225.
    Koch HP (1993) Saponine in Knoblauch und Küchenzwiebel. Dtsch Apoth Ztg 133: 3733Google Scholar
  226. 226.
    Matsuura H (2001) Saponins in Garlic as Modifiers of the Risk of Cardiovascular Disease. J Nutr 131: 1000SGoogle Scholar
  227. 227.
    Duta A, Mandal D, Mondal NB, Banerjee S, Sahu NP, Mandal C (unpublished results)Google Scholar
  228. 228.
    Wink M (1999) Functions of Plant Secondary Metabolites and Their Exploitation in Biotechnology. Sheffield Academic Press, SheffieldGoogle Scholar
  229. 229.
    Tschesche R (1971) Advances in the Chemistry of Antibiotic Substances from Higher Plants. In: Wagner H, Hörhammer I (eds.) Pharmacognosy and Phytochemistry, p. 274. Springer, Berlin Heidelberg New YorkGoogle Scholar
  230. 230.
    Schönbeck F, Schlösser E (1976) Preformed Substances as Potential Phytoprotectants. In: Heitefuss R, Williams PH (eds.) Physiological Plant Pathology, p. 653. Springer, Berlin Heidelberg New YorkGoogle Scholar
  231. 231.
    Osbourn AE (1996) Pre-Formed Antimicrobial Compounds and Plant Defence Against Fungal Attack. Plant Cell 8: 1821Google Scholar
  232. 232.
    Tschesche R (1972) Biosynthesis of Cardinolides, Bufadienolides and Steroid Sapogenins. Proc Royal Soc (B) 180: 187Google Scholar
  233. 233.
    Heftmann E (1983) Biogenesis of Steroids in Solanaceae. Phytochemistry 22: 1843Google Scholar
  234. 234.
    Tal B, Tamir J, Rokem JS, Goldberg I (1984) Isolation and Characterization of an Intermediate Steroid Metabolite in Diosgenin Biosynthesis in Suspension Cultures of Dioscorea deltoidea Cells. Biochem J 219: 619Google Scholar
  235. 235.
    Gurielidze KG, Pasehnichenko VA, Vasil’eva IS (1987) Glucohydrolase from the Leaves and Roots of Dioscorea deltoidea Wall, Biokhimia 52: 362Google Scholar
  236. 236.
    Kalinowska M, Wojciechowski ZA (1986) Enzymatic Synthesis of Nuatigenin 3β-D-Glucoside in Oat (Avena sativa L.) Leaves. Phytochemistry 25: 2525Google Scholar
  237. 237.
    Kalinowska M, Wojciechowski ZA (1987) Subcellular Localization of UDPG: Nuatigenin Glucosyltransferase in Oat Leaves. Phytochemistry 26: 353Google Scholar
  238. 238.
    Paczkowski C, Zimowski J, Krawczyk D, Wojciechowski ZA (1990) Steroid-Specific Glucosyltransferases in Asparagus plumosus Shoots. Phytochemistry 29: 63Google Scholar
  239. 239.
    Indrayanto G, Zumaroh S, Syahrani A, Wilkins AL (2001) C-27 and C-3 Glucosylation of Diosgenin by Cell Suspension Cultures of Costus speciosus. J Asian Nat Prod Res 3: 161Google Scholar
  240. 240.
    Kalinowska M, Zimowski J, Paczkowski C, Wojciechowski ZA (2005) The Formation of Sugar Chains in Triterpenoid Saponins and Glycoalkaloids. Phytochem Rev 4: 237Google Scholar
  241. 241.
    Jin J-M, Zhang Y-J, Yang C-R (2004) Four New Steroid Constituents from the Waste Residue of Fibre Separation from Agave americana Leaves. Chem Pharm Bull 52: 654Google Scholar
  242. 242.
    Da Silva BP, De Sousa AC, Silva GM, Mendes TP, Parente JP (2002) A New Bioactive Steroidal Saponin from Agave attenuata. Z Naturforsch 57c: 423Google Scholar
  243. 243.
    Silva GM, De Souza AM, Lara LS, Mendes TP, Da Silva BP, Lopes AG, Caruso-Neves C, Parente JP (2005) A New Steroidal Saponin from Agave brittoniana and Its Biphasic Effect on the Na+-ATPase Activity. Z Naturforsch 60c: 121Google Scholar
  244. 244.
    Abdel-Gawad MM, El-Sayed MM, Abdel-Hameed ES (1999) Molluscicidal Steroidal Saponins and Lipid Content of Agave decipiens. Fitoterapia 70: 371Google Scholar
  245. 245.
    Da Silva BP, Parente JP (2005) A New Bioactive Steroidal Saponin from Agave shrevei. Z Naturforsch 60c: 57Google Scholar
  246. 246.
    Barile E, Zolfaghari B, Sajjadi SE, Lanzotti V (2004) Saponins of Allium elburzense. J Nat Prod 67: 2037Google Scholar
  247. 247.
    Akhov LS, Musienko MM, Piacente S, Pizza C, Oleszek W (1999) Structure of Steroidal Saponins from Underground Parts of Allium nutans L. J Agric Food Chem 47: 3193Google Scholar
  248. 248.
    Carotenuto A, Fattorusso E, Lanzotti V, Magno S (1999) Spirostanol Saponins from Allium porrum L. Phytochemistry 51: 1077Google Scholar
  249. 249.
    Zou Z-M, Yu D-Q, Cong P-Z (2001) A Steroidal Saponin from the Seeds of Allium tuberosum. Phytochemistry 57: 1219Google Scholar
  250. 250.
    Ikeda T, Tsumagari H, Okawa M, Nohara T (2004) Pregnane-and Furostane-Type Oligoglycosides from the Seeds of Allium tuberosum. Chem Pharm Bull 52: 142Google Scholar
  251. 251.
    Zhang H-J, Sydara K, Tan GT, Ma C, Southavong B, Soejarto DD, Pezzuto JM, Fong HHS (2004) Bioactive Constituents from Asparagus cochinchinensis. J Nat Prod 67: 194Google Scholar
  252. 252.
    Li Y-F, Hu L-H, Lou F-C, Hong J-R, Li J, Shen Q (2005) Furostanoside from Asparagus filicinus. J Asian Nat Prod Res 7: 43Google Scholar
  253. 253.
    Huang X, Kong L (2006) Steroidal Saponins from Roots of Asparagus officinalis. Steroids 71: 171Google Scholar
  254. 254.
    Farid H, Haslinger E, Kunert O, Wegner C, Hamburger M (2002) Steroidal Glycosides from Balanites aegyptiaca. Helv Chim Acta 85: 1019Google Scholar
  255. 255.
    Kuroda M, Mimaki Y, Hasegawa F, Yokosuka A, Sashida Y, Sakagami H (1999) Steroidal Glycosides from the Bulbs of Camassia leichtlinii and Their Cytotoxic Activities. Chem Pharm Bull 47: 738Google Scholar
  256. 256.
    Haraguchi M, Motidome M, Morita H, Takeya K, Itokawa H, Mimaki Y, Sashida Y (1999) New Polyhydroxylated Steroidal Sapogenin and Saponin from the Leaves of Cestrum sendtenerianum. Chem Pharm Bull 47: 582Google Scholar
  257. 257.
    Mimaki Y, Kuroda M, Takaashi Y, Sashida Y (1998) Steroidal Saponins from the Leaves of Cordyline stricta. Phytochemistry 47: 79Google Scholar
  258. 258.
    Da Silva BP, Bernardo RR, Parente JP (1999) A Furostanol Glycoside from Rhizomes of Costus spicatus. Phytochemistry 51: 931Google Scholar
  259. 259.
    Dong M, Feng X-Z, Wang B-X, Wu L-J, Ikejima T (2001) Two Novel Furostanol Saponins from the Rhizomes of Dioscorea panthaica Prain et Burkill and Their Cytotoxic Activity. Tetrahedron 57: 501Google Scholar
  260. 260.
    Dong M, Feng X-Z, Wu L-J, Wang B-X, Ikejima T (2001) Two New Steroidal Saponins from the Rhizomes of Dioscorea panthaica and Their Cytotoxic Activity. Planta Med 67: 853Google Scholar
  261. 261.
    Osorio JN, Martinez OMM, Navarro YMC, Watanabe K, Sakagami H, Mimaki Y (2005) Polyhydroxylated Spirostanol Saponins from the Tubers of Dioscorea polygonoides. J Nat Prod 68: 1116Google Scholar
  262. 262.
    Yang D-J, Lu T-J, Hwang LS (2003) Isolation and Identification of Steroidal Saponins in Taiwanese Yam Cultivar (Dioscorea pseudojaponica Yamamoto). J Agric Food Chem 51: 6438Google Scholar
  263. 263.
    Yang Q-X, Xu M, Zhang Y-J, Li H-Z, Yang C-R (2004) Steroidal Saponins from Disporopsis pernyi. Helv Chim Acta 87: 1248Google Scholar
  264. 264.
    Zheng Q-A, Zhang Y-J, Li H-Z, Yang C-R (2004) Steroidal Saponins from Fresh Stem of Dracaena cochinchinensis. Steroids 69: 111Google Scholar
  265. 265.
    Mimaki Y, Kuroda M, Takaashi Y, Sashida Y (1998) Steroidal Saponins from the Stems of Dracaena concinna. Phytochemistry 47: 1351Google Scholar
  266. 266.
    Gonzalez AG, Hernandez JC, Leon F, Padron JI, Estevez F, Quintana J, Bermejo J (2003) Steroidal Saponins from the Bark of Dracaena draco and Their Cytotoxic Activities. J Nat Prod 66: 793Google Scholar
  267. 267.
    Yokosuka A, Mimaki Y, Sashida Y (2000) Steroidal Saponins from Dracaena surculosa. J Nat Prod 63: 1239Google Scholar
  268. 268.
    Joanne L, Boyce S, Tinto WF, McLean S, Reynolds WF (2004) Saponins from Furcraea selloa var. marginata. Fitoterapia 75: 634Google Scholar
  269. 269.
    He X, Qiu F, Shoyama Y, Tanaka H, Yao X (2002) Two New Steroidal Saponins from “Gualou-xiebai-baijiu-tang” Consisting of Fructus Trichosanthis and Bulbus Allii Macrostemi. Chem Pharm Bull 50: 653Google Scholar
  270. 270.
    Watanabe K, Mimaki Y, Sakagami H, Sashida Y (2003) Bufadienolide and Spirostanol Glycosides from the Rhizomes of Helleborus orientalis. J Nat Prod 66: 236Google Scholar
  271. 271.
    Braca A, Prieto JM, De Tommasi N, Tomè F, Morelli I (2004) Furostanol Saponins and Quercetin Glycosides from the Leaves of Helleborus viridis L. Phytochemistry 65: 2921Google Scholar
  272. 272.
    Konishi T, Fujiwara Y, Konoshima T, Kiyosawa S, Nishi M, Miyahara K (2001) Steroidal Saponins from Hemerocallis fulva var. kwanso. Chem Pharm Bull 49: 318Google Scholar
  273. 273.
    Mimaki Y, Satou T, Kuroda M, Sashida Y, Hatakeyama Y (1999) Steroidal Saponins from the Bulbs of Lilium candidum. Phytochemistry 51: 567Google Scholar
  274. 274.
    Mimaki Y, Satou T, Kuroda M, Sashida Y, Hatakeyama Y (1998) New Steroidal Constituents from the Bulbs of Lilium candidum. Chem Pharm Bull 46: 1829Google Scholar
  275. 275.
    Dai H-F, Deng S-M, Tan N-H, Zhou J (2005) A New Steroidal Glycoside from Ophiopogon japonicus (Thumb.) Ker-Gawl. J Integrative Plant Biol 47: 1148Google Scholar
  276. 276.
    Kuroda M, Mimaki Y, Ori K, Sakagami H, Sashida Y (2004) Steroidal Glycosides from the Bulbs of Ornithogalum thyrsoides. J Nat Prod 67: 1690Google Scholar
  277. 277.
    Kuroda M, Ori K, Mimaki Y (2006) Omithosaponins A-D, Four New Polyoxygenated Steroidal Glycosides from the Bulbs of Ornithogalum thyrsoides. Steroids 71: 199Google Scholar
  278. 278.
    Jin J-M, Zhang Y-J, Li H-Z, Yang C-R (2004) Cytotoxic Steroidal Saponins from Polygonatum zanlanscianense. J Nat Prod 67: 1992Google Scholar
  279. 279.
    Mimaki Y, Kuroda M, Yokosuka A, Sashida Y (1998) Two New Bisdesmosidic Steroidal Saponins from the Underground Parts of Ruscus aculeatus. Chem Pharm Bull 46: 879Google Scholar
  280. 280.
    Mimaki Y, Kuroda M, Yokosuka A, Sashida Y (1999) A Spirostanol Saponin from the Underground Parts of Ruscus aculeatus. Phytochemistry 51: 689Google Scholar
  281. 281.
    Honbu T, Ikeda T, Zhu X-H, Yoshihara O, Okawa M, Nafady AM, Nohara T (2002) New Steroidal Glycosides from the Fruits of Solanum anguivi. J Nat Prod 65: 1918Google Scholar
  282. 282.
    Zhu X-H, Ikeda T, Nohara T (2000) Studies on Constituents of Solanaceous Plants. (46). Steroidal Glycosides from the Fruits of Solanum anguivi. Chem Pharm Bull 48: 568Google Scholar
  283. 283.
    Putalun W, Xuan L-J, Tanaka H, Shoyama Y (1999) Solakhasoside, A Novel Steroidal Saponin from Solanum khasianum. J Nat Prod 62: 181.Google Scholar
  284. 284.
    Ferro EA, Alvarenga NL, Ibarrola DA, Hellion-Ibarrola MC, Ravelo AG (2005) A New Steroidal Saponin from Solanum sisymbriifolium Roots. Fitoterapia 76: 577Google Scholar
  285. 285.
    Ono M, Nishimura K, Suzuki K, Fukushima T, Igoshi K, Yoshimitsu H, Ikeda T, Nohara T (2006) Steroidal Glycosides from the Underground Parts of Solanum sodomaeum. Chem Pharm Bull 54: 230Google Scholar
  286. 286.
    Iida Y, Yanai Y, Ono M, Ikeda T, Nohara T (1998) Three Unusual 22-β-O-23-Hydroxy-(5α)-Spirostanol Glycosides from the Fruits of Solanum torvum. Chem Pharm Bull 53: 1112Google Scholar
  287. 287.
    Temraz A, El Gindi OD, Kadry HA, De Tommasi N, Braca A (2006) Steroidal Saponins from the Aerial Parts of Tribulus alatus Del. Phytochemistry 67: 1011Google Scholar
  288. 288.
    Perrone A, Plaza A, Bloise E, Nigro P, Hamed AI, Belisario MA, Pizza C, Piacente S (2005) Cytotoxic Furostanol Saponins and a Megastigmane Glucoside from Tribulus parvispinus. J Nat Prod 68: 1549Google Scholar
  289. 289.
    Combarieu ED, Fuzzati N, Lovati M, Mercalli E (2003) Furostanol Saponins from Tribulus terrestris. Fitoterapia 74: 583Google Scholar
  290. 290.
    Xu Y-X, Chen H-S, Liang H-Q, Gu Z-B, Liu W-Y, Leung W-N, Li T-J (2000) Three New Saponins from Tribulus terrestris. Planta Med 66: 545Google Scholar
  291. 291.
    Kostova I, Dinchev D, Rentsch GH, Dimitrov V, Ivanova A (2002) Two New Sulfated Furostanol Saponins from Tribulus terrestris. Z Naturforsch 57c: 33Google Scholar
  292. 292.
    Huang J-W, Tan C-H, Jiang S-H, Zhu D-Y (2003) Terrestrinins A and B, Two New Steroid Saponins from Tribulus terrestris. J Asian Nat Prod Res 5: 285Google Scholar
  293. 293.
    Saxena VK, Shalem A (2004) Yamogenin-3-O-β-d-glucopyranosyl-(1→4)-O-α-d-xylopyranoside from the Seeds of Trigonella foenum-graecum. J Chem Sci 116: 79Google Scholar
  294. 294.
    Murakami T, Kishi A, Matsuda H, Yoshikawa M (2000) Medicinal Foodstuffs. XVII. Fenugreek Seed. (3): Structures of New Furostanol Type Steroid Saponins, Trigoneosides Xa, Xb, XIb, XIIa, XIIb and XIIIa, from the Seeds of Egyptian Trigonella foenum-graecum L. Chem Pharm Bull 48: 994Google Scholar
  295. 295.
    Shen P, Wang S-L, Liu X-K, Yang C-R, Cai B, Yao X-S (2003) Steroidal Saponins from Rhizomes of Tupistra wattii Hook. f. Chem Pharm Bull 51: 305Google Scholar
  296. 296.
    Yang Q-X, Zhang Y-J, Li H-Z, Yang C-R (2005) Polyhydroxylated Steroidal Constituents from the Fresh Rhizomes of Tupistra yunnanensis. Steroids 70: 732Google Scholar
  297. 297.
    Ozipek M, Saracoglu I, Ogihara Y, Calii S (2002) Nuatigenin-Type Steroidal Saponins from Veronica fuhsii and V. multifida. Z Naturforsch 57c: 603Google Scholar
  298. 298.
    Oleszek W, Sitek M, Stochmal A, Piacente S, Pizza C, Cheeke P (2001) Steroidal Saponins of Yucca schidigera Roezl. J Agric Food Chem 49: 4392Google Scholar

Copyright information

© Springer-Verlag/Wien 2008

Authors and Affiliations

  • N. P. Sahu
    • 1
  • S. Banerjee
    • 1
  • N. B. Mondal
    • 1
  • D. Mandal
    • 1
  1. 1.Indian Institute of Chemical BiologyKolkataIndia

Personalised recommendations