Advertisement

Characteristic Fluctuation Dependence on Discrete Dopant for 16nm SOI FinFETs at Different Temperature

  • Yiming Li
  • Chih-Hong Hwang
  • Shao-Ming Yu
  • Hsuan-Ming Huang
  • Ta-Ching Yeh
  • Hui-Wen Cheng
  • Hung-Ming Chen
  • Jiunn-Ren Hwang
  • Fu-Liang Yang

Abstract

In this paper, we numerically study the discrete-dopant-induced characteristic fluctuations in 16nm silicon-on-insulator (SOI) FinFETs. For devices under different temperature condition, discrete dopants are statistically generated and positioned into the three-dimensional channel region to examine associated carrier transportation characteristics, concurrently capturing “dopant concentration variation” and “dopant position fluctuation”. Electrical characteristics’ fluctuations are growing worse when the substrate temperature increases, the standard deviation of threshold voltage increases 1.75 times when substrate temperature increases from 300K to 400K for example. This “atomistic” device simulation technique is computationally cost-effective and provides us an insight into the problem of discrete-dopant-induced fluctuation and the relation between the fluctuation and thermal effect.

Keywords

Substrate Temperature Threshold Voltage Substrate Temperature Increase Semiconductor Process Characteristic Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Roy and A. Asenov. “Where do the dopants go?”, Science, vol. 309. pp. 388–390. 2005.Google Scholar
  2. [2]
    Y. Li and S.-M. Yu. “Comparison of random-dopant-induced threshold voltage fluctuation in nanoscale single-, double-, and surrounding-gate field-effect transistors”. Jpn. J. Appl. Phys., vol. 45, pp. 6860–6865, 2006.CrossRefMathSciNetGoogle Scholar
  3. [3]
    F.-L. Yang et. al., “35 nm CMOS”, Tech. Dig. Symp. VLSI Tech., pp. 104–105. 2002.Google Scholar
  4. [4]
    F.-L. Yang et. al., “Strained FIP-SOI (FinFET/FD/PD-SOI) for sub-65 nm CMOS scaling”, Tech. Dig. Symp. VLSI Tech., pp. 137–138, 2003.Google Scholar
  5. [5]
    Y. Li, H.-M. Chou. and J.-W. Lee, “Investigation of electrical characteristics on surrounding-gate and omega-shaped-gate nanowire FinFETs”, IEEE Trans. Nanotech., vol. 4, 510–516, 2005.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2007

Authors and Affiliations

  • Yiming Li
    • 1
  • Chih-Hong Hwang
    • 1
  • Shao-Ming Yu
    • 2
  • Hsuan-Ming Huang
    • 1
  • Ta-Ching Yeh
    • 1
  • Hui-Wen Cheng
    • 1
  • Hung-Ming Chen
    • 3
  • Jiunn-Ren Hwang
    • 3
  • Fu-Liang Yang
    • 3
  1. 1.Department of Communication EngineeringNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Department of Computer ScienceNational Chiao Tung UniversityHsinchuTaiwan
  3. 3.Taiwan Semiconductor Manufacturing CompanyHsinchuTaiwan

Personalised recommendations