Potential sources of increased iron in the substantia nigra of parkinsonian patients

  • M. Gerlach
  • K. L. Double
  • M. B. H. Youdim
  • P. Riederer
Part of the Journal of Neural Transmission. Supplementa book series (NEURALTRANS, volume 70)


Histopathological, biochemical and in vivo brain imaging techniques, such as magnetic resonance imaging and transcranial sonography, revealed a consistent increase of substantia nigra (SN) iron in Parkinson’s disease (PD). Increased iron deposits in the SN may have genetic and non-genetic causes. There are several rare movement disorders associated with neurodegeneration, and genetic abnormalities in iron regulation resulting in iron deposition in the brain. Non-genetic causes of increased SN iron may be the result of a disturbed or open blood-brain-barrier, local changes in the normal iron-regulatory systems, intraneuronal transportation of iron from iron-rich area into the SN and release of iron from intracellular iron storage molecules. Major iron stores are ferritin and haemosiderin in glial cells as well as neuromelanin in neurons. Age- and disease dependent overload of iron storage proteins may result in iron release upon reduction. Consequently, the low molecular weight chelatable iron complexes may trigger redox reactions leading to damage of biomolecules. Additionally, upon neurodegeneration there is strong microglial activation which can be another source of high iron concentrations in the brain.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aisen P, Leibman A (1972) Lactoferrin and transferrin: a comparative study. Biochem Biophys Acta 257: 314–323PubMedGoogle Scholar
  2. Aisen P, Wessling-Resnick M, Leibold EA (1999) Iron metabolism. Curr Opin Chem Biol 3: 200–206PubMedCrossRefGoogle Scholar
  3. Anderson BF, Baker HM, Norris GE, Rice DW, Baker EN (1989) Structure of human lactoferrin: crystal-lographic structure analysis and refinement at 2.8A resolution. J Molec Biol 209: 711–734PubMedCrossRefGoogle Scholar
  4. Andrew R, Watson DG, Bet SA, Midgley JM, Wenlong H, Perry RK (1993) The determination of 6-hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem Res 18: 1175–1177PubMedCrossRefGoogle Scholar
  5. Berg D, Gerlach M, Youdim MBH, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79: 225–236PubMedCrossRefGoogle Scholar
  6. Biemond P, Van Eijk H, Swaak A, Koster J (1984) Iron mobilisation from ferritin by superoxide derived from stimulated polymorphonuclear leukocytes: possible mechanism in inflammation diseases. J Clin Invest 73: 1576–1579PubMedCrossRefGoogle Scholar
  7. Birgens HS (1991) The interaction of lactoferrin with human monocytes. Dan Med Bull 38: 244–252PubMedGoogle Scholar
  8. Boyer RE, Grabill T, Petrovich R (1988) Reactive release of ferritin iron: a kinetic assay. Anal Biochem 174: 17–22PubMedCrossRefGoogle Scholar
  9. Connor JR, Menzies SL, Martin SM, Mufson EJ (1990) Cellular distribution of transferrin, ferritin and iron in normal and aged human brains. J Neurosci Res 27: 595–611PubMedCrossRefGoogle Scholar
  10. Connor J, Synder BS, Beard JL, Fine R, Mufson, E (1992) Regional distribution of iron and ironregulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31: 327–335PubMedCrossRefGoogle Scholar
  11. Connor JR, Boeshore KL, Benkovic SA, Menzies SL (1994) Isoforms of ferritin have a specific cellular distribution in the brain. J Neurosci Res 37: 461–465PubMedCrossRefGoogle Scholar
  12. Connor JR, Snyder BS, Arosio P, Loeffler DA, LeWitt P (1995) A quantitative analysis of isoferritins in selected regions of aged, parkinsonian and Alzheimer’s diseased brains. J Neurochem 65: 717–724PubMedCrossRefGoogle Scholar
  13. Davidson LA, Lonnerdal B (1989) Fe-saturation and proteolysis of human lactoferrin: effect on brushborder receptor mediated uptake of Fe and Mn. Am J Physiol 2257: G930–G934Google Scholar
  14. Dexter DT, Carayon A, Vihailhet M, Ruberg M, Agid F, Agid Y, Lees AJ, Wells FR, Jenner P, Marsden CD (1990) Decreased ferritin levels in brain of Parkinson’s disease. J Neurochem 55: 16–20PubMedCrossRefGoogle Scholar
  15. Double KL, Maywald M, Schmittel M, Riederer P, Gerlach M (1998) In vitro studies of ferritin iron release and neurotoxicity. J Neurochem 70: 2492–2499PubMedCrossRefGoogle Scholar
  16. Double KL, Riederer P, Gerlach M (1999) The significance of neuromelanin for neurodegeneration in Parkinson’s disease. Drug News Perspect 12: 333–340Google Scholar
  17. Double KL, Gerlach M, Youdim MBH, Riederer P (2000) Impaired iron homeostasis in Parkinson’s disease. J Neural Transm [Suppl] 60: 37–58Google Scholar
  18. Double KL, Gerlach M, Schünemann V, Trautwein AX, Zecca L, Gallorini M, Youdim MBH, Riederer P, Ben-Shachar D (2003) Iron binding characteristics of neuromelanin of the human substantia nigra. Biochem Pharmacol 66: 489–494PubMedCrossRefGoogle Scholar
  19. Dwork A, Lawler G, Zybert P, Durkin M, Osman M, Willson N, Barkai A (1990) An autoradiographic study of the uptake and distribution of iron by the brain of young rat. Brain Res 518: 31–39PubMedCrossRefGoogle Scholar
  20. Faucheux BA, Nillesse N, Damier P, Spik G, Mouatt-Prigent A, Pierce A, Leveugle B, Kubis N, Hauw JJ, Agid Y, Hirsch EC (1995) Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson’s disease. Proc Natl Acad Sci USA 92: 9603–9607PubMedCrossRefGoogle Scholar
  21. Faucheux BA, Hauw J, Agid Y, Hirsch EC (1997) The density of [125I]-transferrin binding sites on perikarya of melanized neurons of the substantia nigra is decreased in Parkinson’s disease. Brain Res 749: 170–174PubMedCrossRefGoogle Scholar
  22. Federow H, Tribl F, Halliday G, Gerlach M, Riederer P, Double K (2005) Neuromelanin in human dopamine neurons: comparison with pheripheral melanins and relevance to Parkinson’s disease. Progr Neurobiol 75: 109–124CrossRefGoogle Scholar
  23. Fillebeen C, Descamps L, Dehouck MP, Fenart L, Benaissa M, Spik G, Cecchelli R, Pierce A (1999a) Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem 274: 7011–7017PubMedCrossRefGoogle Scholar
  24. Fillebeen C, Mitchell V, Dexter D, Benaissa M, Beauvillain JC, Spik G, Pierce A (1999b) Lactoferrin is synthesized by mouse brain tissue and its expression is enhanced after MPTP treatment. Mol Brain Res 72: 183–194PubMedCrossRefGoogle Scholar
  25. Gerlach M, Ben-Shachar D, Riederer P, Youdim MBH (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63: 793–807PubMedCrossRefGoogle Scholar
  26. Gerlach M, Trautwein AX, Zecca L, Youdim MBH, Riederer P (1995) Mössbauer spectroscopic studies of human neuromelanin isolated from the substantia nigra. J Neurochem 65: 923–926PubMedCrossRefGoogle Scholar
  27. Gerlach M, Double K, Götz ME, Youdim MBH, Riederer P (2006) The role of iron in the pathogenesis of Parkinson’s disease. In: Sigel A, Sigel H, Sigel RKO (eds) Neurodegenerative Diseases and Metal Ions, Vol 1 of Metal Ions in Life Sciences. Wiley & Sons, Chichester (in press)Google Scholar
  28. Good P, Olanow C, Perl D (1992) Neuromelanincontaining neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 593: 343–346PubMedCrossRefGoogle Scholar
  29. Götz ME, Double K, Gerlach M, Youdim MBH, Riederer P (2004) The relevance of iron in the pathogenesis of Parkinson’s disease. Ann NYAcad Sci 1012: 193–208CrossRefGoogle Scholar
  30. Hallgren B, Sourander P (1958) The effect of age on non-haem iron in the human brain. J Neurochem 3: 41–51PubMedGoogle Scholar
  31. Halliwell B, Gutteridge JM (1986) Iron and free radical reactions: two aspects of antioxidant protection. Trends Biochem Sci 11: 1372–1375CrossRefGoogle Scholar
  32. He Y, Thong PS, Lee T, Leong SK, Mao BY, Dong F, Watt F (2003) Dopaminergic cell death precedes iron elevation in MPTP-injected monkeys. Free Rad Biol Med 35: 540–547PubMedCrossRefGoogle Scholar
  33. Hirsch E, Graybiel A, Agid Y (1988) Melanized dopamine neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334: 345–348PubMedCrossRefGoogle Scholar
  34. Hu J, Connor J (1996) Demonstration and characterization of the iron regulatory protein in human brain. J Neurochem 67: 838–844PubMedCrossRefGoogle Scholar
  35. Jellinger K (1989) Pathology of Parkinson’s syndrome. In: Calne DB (eds) Handbook of experimental pharmacology, vol 88. Springer, Berlin Heidelberg, pp 47–112Google Scholar
  36. Jellinger K, Paulus W, Grundke-Iqbal I, Riederer P, Youdim MBH (1990) Brain iron and ferritin in Parkinson’s disease and Alzheimer’s disease. J Neural Transm [PD Sect] 2: 327–340CrossRefGoogle Scholar
  37. Jellinger K, Kienzel E, Rumpelmair G, Riederer P, Stachellberger H, Ben-Shachar D, Youdim MBH (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysis. J Neurochem 59: 1168–1171PubMedCrossRefGoogle Scholar
  38. Jellinger K, Linert L, Kienzl E, Herlinger E, Youdim MBH (1995) Chemical evidence for 6-hydroxy-dopamine to be an endogenous toxic factor in the pathogenesis of Parkinson’s disease. J Neural Transm [Suppl] 46: 297–314Google Scholar
  39. Kienzl E, Puchinger L, Jellinger K, Linert W, Stachelberger H, Jameson R (1995) The role of transition metals in the pathogenesis of Parkinson’s diease. J Neurol Sci 134: 69–78PubMedCrossRefGoogle Scholar
  40. Kortekaas R, Leenders KL, van Oostrom JCH, Vaalburg W, Bart J, Willemsen ATM, Hendrikse NH (2005) Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57: 76–179CrossRefGoogle Scholar
  41. Lapenna D, Degioia S, Ciofani G, Cuccurullo F (1995) Captopril induces iron release from ferritin and oxidative stress. J Pharm Pharmacol 47: 59–61Google Scholar
  42. Leveugle B, Faucheux B, Bouras C, Nillesse N, Spik G, Hirsch E, Agid Y, Hof P (1996) Cellular distribution of the iron-binding protein lactoferrin in the mesencephalon of Parkinson’s disease cases. Acta Neuropathol 91: 566–572PubMedCrossRefGoogle Scholar
  43. Linert W, Herlinger E, Jameson RF, Kienzl E, Jellinger K, Youdim MBH (1996) Dopamine, 6-hydroxydopamine, iron and dioxygen — their mutual interactions and possible implication in the development of Parkinson’s disease. Biochim Biophys Acta [Molec Basis Dis] 1316: 160–168CrossRefGoogle Scholar
  44. Logroscino G, Marder K, Graziano J, Freyer G, Slavkovich V, LoIacono N, Cote L, Mayeux R (1997) Altered systemic iron metabolism in Parkinson’s disease. Neurology 49: 714–717PubMedGoogle Scholar
  45. Lopiano L, Digilio G, Fasano M, Giraudo S, Rizzone M, Torre E, Bergamasco B (1999) Iron and neuromelanin in Parkinson’s disease. J Neural Transm 106: XXIVGoogle Scholar
  46. Mann VM, Cooper JM, Daniel SE, Srai K, Jenner P, Marsden CD, Schapira AH (1994) Complex I, iron, and ferritin in Parkinson’s disease substantia nigra. Ann Neurol 36: 876–881PubMedCrossRefGoogle Scholar
  47. Meneghini R (1997) Iron homeostasis, oxidative stress and DNA damage. Free Radic Biol Med 23: 783–792PubMedCrossRefGoogle Scholar
  48. Monteiro HP, Winterbourn CC (1989) 6-Hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation. Biochem Pharmacol 38: 4177–4182PubMedCrossRefGoogle Scholar
  49. Morris C, Candy J, Omar S, Bloxham C, Edwardson J (1994) Transferrin receptors in the parkinsonian midbrain. Neuropathol Appl Neurobiol 20: 468–472PubMedGoogle Scholar
  50. Napolitano A, Crescenzi O, Pezzella A, Prota G (1995) Generation of the neurotoxin 6-hydroxydopamine by peroxidase/H2O2 oxidation of dopamine. J Med Chem 38: 917–922PubMedCrossRefGoogle Scholar
  51. Oestreicher E, Sengstock GJ, Riederer P, Olanow CW, Dunn AJ, Arendash GW (1994) Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. Brain Res 660: 8–18PubMedCrossRefGoogle Scholar
  52. Ponka P (1999) Cellular iron metabolism. Kidney Int [Suppl 69] 55: 2–11CrossRefGoogle Scholar
  53. Riederer P (2004) Views on neurodegeneration as a basis for neuroprotective strategies. Med Sci Monit 10(12): RA287–RA290Google Scholar
  54. Riederer P, Sofic E, Rausch WD, Kruzik P, Youdim MBH (1985) Dopaminforschungheute undmorgen — L-Dopa in der Zukunft. In: Riederer P, Vmek H (eds) L-Dopa-Substitution der Parkinson-Krankheit. Geschichte-Gegenwart-Zukunft. Springer, Wien New York, pp 127–144Google Scholar
  55. Riederer P, Rausch WD, Schmidt B, Kruzik C, Sofic E, Danielczyk W, Fischer M, Ogris E (1988) Biochemical fundamentals of Parkinson’s disease. Mt Sinai J Med 55: 21–28PubMedGoogle Scholar
  56. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520PubMedCrossRefGoogle Scholar
  57. Rief D, Simmons R (1990) Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys 283: 537–541CrossRefGoogle Scholar
  58. Schipper HM (2000) Heme oxygenase-1, role in brain ageing and neurodegeneration. Exp Gerontol 35: 821–830PubMedCrossRefGoogle Scholar
  59. Schipper HM (2004) Heme oxygenase expression in human central nervous system disorders. Free Radic Biol Med 37: 1995–2011PubMedCrossRefGoogle Scholar
  60. Sian J, Gerlach M, Youdim MBH, Riederer P (1999) Parkinson’s disease: a major hypokinetic basal ganglia disorder. J Neural Transm 106: 443–476PubMedCrossRefGoogle Scholar
  61. Shima T, Sarna T, Swartz H, Stroppolo A, Gerbasi R, Zecca L (1997) Binding of iron to neuromelanin of human substantia nigra and synthetic melanin: an electron paramagnetic resonance spectroscopy study. Free Radic Biol Med 23: 110–119PubMedCrossRefGoogle Scholar
  62. Smith MA, Wehr K, Harris PLR, Siedlak SL, Connor JR, Perry G (1998) Abnormal localisation of iron regulatory protein in Alzheimer’s disease. Brain Res 788: 232–236PubMedCrossRefGoogle Scholar
  63. Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MBH (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74: 199–205PubMedCrossRefGoogle Scholar
  64. Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MBH (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem 56: 978–982PubMedCrossRefGoogle Scholar
  65. Thomas M, Jankovic J (2004) Neurodegenerative disease and iron storage in the brain. Curr Opin Neurol 17: 437–442PubMedCrossRefGoogle Scholar
  66. Thomson A, Rogers J, Leedman P (1999) Iron regulatory proteins, iron-responsive elements and ferritin mRNA translation. Int J BiochemCell Biol 31: 1139–1152CrossRefGoogle Scholar
  67. Torsdottir G, Kristinsson J, Sveinbjornsdottier S, Snaedal J, Jahannesson T (1999) Copper, ceruloplasmin, superoxide dismutase and iron parameters in Parkinson’s disease. Pharmacol Toxicol 85: 239–243PubMedCrossRefGoogle Scholar
  68. Yamada Y, Amagasaki T, Jacobsen DW, Green R (1987) Lactoferrin binding by leukemia cell lines. Blood 70: 264–270PubMedGoogle Scholar
  69. Yoshida T, Tanaka M, Sotomatsu A, Hirai S (1995) Activated microglia cause superoxide-mediated release of iron from ferritin. Neurosci Lett 190: 21–24PubMedCrossRefGoogle Scholar
  70. Youdim MBH, Ben-Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand [Suppl 126] 80: 47–54CrossRefGoogle Scholar
  71. Youdim M, Ben-Shachar D, Riederer P (1993) The possible role of iron in the etiopathology of Parkinson’s disease. Mov Disord 8: 1–12PubMedCrossRefGoogle Scholar
  72. Zecca L, Swartz HM (1993) Total and paramagnetic metals in human substantia nigra and its neuromelanin. J Neural Transm [PD Sect] 5: 203–213CrossRefGoogle Scholar
  73. Zecca L, Shima T, Stroppolo A, Goj C, Battiston A, Gerbasi R, Sarna T, Swartz HM (1996) Interaction of neuromelanin and iron in substantia nigra and other areas of human brain. Neuroscience 73: 407–415PubMedCrossRefGoogle Scholar
  74. Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5: 863–873PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. Gerlach
    • 1
  • K. L. Double
    • 2
  • M. B. H. Youdim
    • 3
  • P. Riederer
    • 4
  1. 1.Laboratory for Clinical Neurochemistry, Department of Child and Adolescence Psychiatry and PsychotherapyUniversity of WürzburgWürzburgGermany
  2. 2.Prince of Wales Medical Research InstituteSydneyAustralia
  3. 3.Eve Topf and National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, and Department of PharmacologyTechnion-Faculty of MedicineHaifaIsrael
  4. 4.Laboratory for Clinical Neurochemistry, Department of Psychiatry and Psychotherapy, and National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases ResearchUniversity of WürzburgGermany

Personalised recommendations