Operative Neuromodulation pp 451-462

Part of the Acta Neurochirurgica Supplements book series (NEUROCHIRURGICA, volume 97/2) | Cite as

Auditory cortex stimulation for tinnitus

  • Dirk De Ridder
  • G. De Mulder
  • E. Verstraeten
  • M. Seidman
  • K. Elisevich
  • S. Sunaert
  • S. Kovacs
  • K. Van der Kelen
  • P. Van de Heyning
  • A. Moller

Abstract

Functional imaging techniques have demonstrated a relationship between the intensity of tinnitus and the degree of reorganization of the primary auditory cortex. Studies in experimental animals and humans have revealed that tinnitus is associated with a synchronized hyperactivity in the auditory cortex and proposed that the underlying pathophysiological mechanism is thalamocortical dysrhythmia; hence, decreased auditory stimulation results in decreased firing rate, and decreased lateral inhibition. Consequently, the surrounding brain area becomes hyperactive, firing at gamma band rates; this is considered a necessary precondition of auditory consciousness, and also tinnitus. Synchronization of the gamma band activity could possibly induce a topographical reorganization based on Hebbian mechanisms. Therefore, it seems logical to try to suppress tinnitus by modifying the tinnitus-related auditory cortex reorganization and hyperactivity. This can be achieved using neuronavigation- guided transcranial magnetic stimulation (TMS), which is capable of modulating cortical activity. If TMS is capable of suppressing tinnitus, the effect should be maintained by implanting electrodes over the area of electrophysiological signal abnormality on the auditory cortex. The results in the first patients treated by auditory cortex stimulation demonstrate a statistically significant tinnitus suppression in cases of unilateral pure tone tinnitus without suppression of white or narrow band noise. Hence, auditory cortex stimulation could become a physiologically guided treatment for a selected category of patients with severe tinnitus.

Keywords

Neuromodulation auditory cortex deafferentation neurostimulation phantom tinnitus auditory cortex transcranial magnetic stimulation TMS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axelsson A, Ringdahl A (1989) Tinnitus — a study of its prevalence and characteristics. Br J Audiol 23: 53–62PubMedGoogle Scholar
  2. 2.
    Axelsson A, Prasher D (2000) Tinnitus induced by occupational and leisure noise. Noise Health 2: 47–54PubMedGoogle Scholar
  3. 3.
    Bekisz M, Wrobel A (1999) Coupling of beta and gamma activity in corticothalamic system of cats attending to visual stimuli. Neuroreport 10: 3589–3594PubMedGoogle Scholar
  4. 4.
    Brookes MJ, Gibson AM, Hall SD, Furlong PL, Barnes GR, Hillebrand A, Singh KD, Holliday IE, Francis ST, Morris PG (2005) GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response in visual cortex. Neuroimage 26: 302–308PubMedGoogle Scholar
  5. 5.
    Brozoski TJ, Bauer CA, Caspary DM (2002) Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci 22: 2383–2390PubMedGoogle Scholar
  6. 6.
    Brugge JF, Volkov IO, Garell PC, Reale RA, Howard MA 3rd (2003) Functional connections between auditory cortex on Heschl’s gyrus and on the lateral superior temporal gyrus in humans. J Neurophysiol 90: 3750–3763PubMedGoogle Scholar
  7. 7.
    Cazals Y, Horner KC, Huang ZW (1998) Alterations in average spectrum of cochleoneural activity by long-term salicylate treatment in the guinea pig: a plausible index of tinnitus. J Neurophysiol 80: 2113–2120PubMedGoogle Scholar
  8. 8.
    Chen GD, Jastreboff PJ (1995) Salicylate-induced abnormal activity in the inferior colliculus of rats. Hear Res 82: 158–178PubMedGoogle Scholar
  9. 9.
    Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48: 1398–1403PubMedGoogle Scholar
  10. 10.
    Chen R (2000) Studies of human motor physiology with transcranial magnetic stimulation. Muscle Nerve Suppl 9: S26–S32PubMedGoogle Scholar
  11. 11.
    Chowdhury SA, Suga N (2000) Reorganization of the frequency map of the auditory cortex evoked by cortical electrical stimulation in the big brown bat. J Neurophysiol 83: 1856–1863PubMedGoogle Scholar
  12. 12.
    Cohen LG, Roth BJ, Nilsson J, Dang N, Panizza M, Bandinelli S, Friauf W, Hallett M (1990) Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalogr Clin Neurophysiol 75: 350–357PubMedGoogle Scholar
  13. 13.
    Contreras D, Llinas R (2001) Voltage-sensitive dye imaging of neocortical spatiotemporal dynamics to afferent activation frequency. J Neurosci 21: 9403–9413PubMedGoogle Scholar
  14. 14.
    Corthout E, Uttl B, Walsh V, Hallett M, Cowey A (2000) Plasticity revealed by transcranial magnetic stimulation of early visual cortex. Neuroreport 11: 1565–1569PubMedGoogle Scholar
  15. 15.
    Crone NE, Boatman D, Gordon B, Hao L (2001) Induced electrocorticographic gamma activity during auditory perception. Brazier Award-winning article, 2001. Clin Neurophysiol 112: 565–582PubMedGoogle Scholar
  16. 16.
    De Ridder D (2004) Tinnitus and auditory cortex: answer to a letter to the editor. J Neurosurg 101: 172–172Google Scholar
  17. 17.
    De Ridder D, De Mulder G, Walsh V, Muggleton N, Sunaert S, Moller A (2004) Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus. Case report. J Neurosurg 100: 560–564PubMedGoogle Scholar
  18. 18.
    De Ridder D, Ryu H, Moller AR, Nowe V, Van de Heyning P, Verlooy J (2004) Functional anatomy of the human cochlear nerve and its role in microvascular decompressions for tinnitus. Neurosurgery 54: 381–388PubMedGoogle Scholar
  19. 19.
    De Ridder D, De Mulder G, Verstraeten E, Kovacs S, Smits M, Sunaert S, Van Der Kelen K, Van de Heyning P, Moller A (2005) Primary and secondary auditory cortex stimulation for intractable tinnitus. ORL (in press)Google Scholar
  20. 20.
    De Ridder D, Verstraeten E, Van der Kelen K, De Mulder G, Sunaert S, Verlooy J, Van de Heyning P, Moller A (2005) Transcranial magnetic stimulation for tinnitus: influence of tinnitus duration on stimulation parameter choice and maximal tinnitus suppression. Otol Neurotol 26: 616–619PubMedGoogle Scholar
  21. 21.
    Deacon T (1997) Evolution and intelligence: beyond the argument from design. In: Scheibel A, Schopf J (eds) The origin and evolution of intelligence. Jones and Bartlett, Boston, pp 103–136Google Scholar
  22. 22.
    Doucet JR, Molavi DL, Ryugo DK (2003) The source of corticocollicular and corticobulbar projections in area Te1 of the rat. Exp Brain Res 153: 461–466PubMedGoogle Scholar
  23. 23.
    Eggermont JJ (1990) On the pathophysiology of tinnitus; a review and a peripheral model. Hear Res 48: 111–123PubMedGoogle Scholar
  24. 24.
    Eggermont JJ, Kenmochi M (1998) Salicylate and quinine selectively increase spontaneous firing rates in secondary auditory cortex. Hear Res 117: 149–160PubMedGoogle Scholar
  25. 25.
    Eggermont JJ (2003) Central tinnitus. Auris Nasus Larynx 30Suppl: S7–S12PubMedGoogle Scholar
  26. 26.
    Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27: 676–682PubMedGoogle Scholar
  27. 27.
    Eichhammer P, Langguth B, Marienhagen J, Kleinjung T, Hajak G (2003) Neuronavigated repetitive transcranial magnetic stimulation in patients with tinnitus: a short case series. Biol Psychiatry 54: 862–865PubMedGoogle Scholar
  28. 28.
    Feig SL (2004) Corticothalamic cells in layers 5 and 6 of primary and secondary sensory cortex express GAP-43 mRNA in the adult rat. J Comp Neurol 468: 96–111PubMedGoogle Scholar
  29. 29.
    Feig SL (2005) The differential distribution of the growth-associated protein-43 in first and higher order thalamic nuclei of the adult rat. Neuroscience 136: 1147–1157PubMedGoogle Scholar
  30. 30.
    Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, Larbig W, Taub E (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375: 482–484PubMedGoogle Scholar
  31. 31.
    Foucher JR, Otzenberger H, Gounot D (2003) The BOLD response and the gamma oscillations respond differently than evoked potentials: an interleaved EEG-fMRI study. BMC Neurosci 4: 22PubMedGoogle Scholar
  32. 32.
    Gao E, Suga N (1998) Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system. Proc Natl Acad Sci USA 95: 12663–12670PubMedGoogle Scholar
  33. 33.
    Gerken GM (1996) Central tinnitus and lateral inhibition: an auditory brainstem model. Hear Res 97: 75–83PubMedGoogle Scholar
  34. 34.
    Gopal KV, Gross GW (2004) Unique responses of auditory cortex networks in vitro to low concentrations of quinine. Hear Res 192: 10–22PubMedGoogle Scholar
  35. 35.
    Gorsler A, Baumer T, Weiller C, Munchau A, Liepert J (2003) Interhemispheric effects of high and low frequency rTMS in healthy humans. Clin Neurophysiol 114: 1800–1807PubMedGoogle Scholar
  36. 36.
    Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334–337PubMedGoogle Scholar
  37. 37.
    Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86: 1698–1702PubMedGoogle Scholar
  38. 38.
    Gurtubay IG, Alegre M, Labarga A, Malanda A, Artieda J (2004) Gamma band responses to target and non-target auditory stimuli in humans. Neurosci Lett 367: 6–9PubMedGoogle Scholar
  39. 39.
    Harrison RV, Ibrahim D, Mount RJ (1998) Plasticity of tonotopic maps in auditory midbrain following partial cochlear damage in the developing chinchilla. Exp Brain Res 123: 449–460PubMedGoogle Scholar
  40. 40.
    Hartmann R, Shepherd RK, Heid S, Klinke R (1997) Response of the primary auditory cortex to electrical stimulation of the auditory nerve in the congenitally deaf white cat. Hear Res 112: 115–133PubMedGoogle Scholar
  41. 41.
    Heller AJ (2003) Classification and epidemiology of tinnitus. Otolaryngol Clin North Am 36: 239–248PubMedGoogle Scholar
  42. 42.
    Higo N, Oishi T, Yamashita A, Matsuda K, Hayashi M (1999) Quantitative non-radioactive in situ hybridization study of GAP-43 and SCG10 mRNAs in the cerebral cortex of adult and infant macaque monkeys. Cereb Cortex 9: 317–331PubMedGoogle Scholar
  43. 43.
    Hopfield JJ, Brody CD (2001) What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proc Natl Acad Sci USA 98: 1282–1287PubMedGoogle Scholar
  44. 44.
    Jastreboff PJ, Sasaki CT (1986) Salicylate-induced changes in spontaneous activity of single units in the inferior colliculus of the guinea pig. J Acoust Soc Am 80: 1384–1391PubMedGoogle Scholar
  45. 45.
    Jastreboff PJ, Brennan JF, Sasaki CT (1988) An animal model for tinnitus. Laryngoscope 98: 280–286PubMedGoogle Scholar
  46. 46.
    Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8: 221–254PubMedGoogle Scholar
  47. 47.
    Jeanmonod D, Magnin M, Morel A (1996) Low-threshold calcium spike bursts in the human thalamus. Common physiopathology for sensory, motor and limbic positive symptoms. Brain 119 (Pt 2): 363–375PubMedGoogle Scholar
  48. 48.
    Joliot M, Ribary U, Llinas R (1994) Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci USA 91: 11748–11751PubMedGoogle Scholar
  49. 49.
    Kaltenbach JA, Czaja JM, Kaplan CR (1992) Changes in the tonotopic map of the dorsal cochlear nucleus following induction of cochlear lesions by exposure to intense sound. Hear Res 59: 213–223PubMedGoogle Scholar
  50. 50.
    Kaltenbach JA, Godfrey DA, Neumann JB, McCaslin DL, Afman CE, Zhang J (1998) Changes in spontaneous neural activity in the dorsal cochlear nucleus following exposure to intense sound: relation to threshold shift. Hear Res 124: 78–84PubMedGoogle Scholar
  51. 51.
    Kaltenbach JA (2000) Neurophysiologic mechanisms of tinnitus. J Am Acad Audiol 11: 125–137PubMedGoogle Scholar
  52. 52.
    Kaltenbach JA, Afman CE (2000) Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res 140: 165–172PubMedGoogle Scholar
  53. 53.
    Kaltenbach JA, Zacharek MA, Zhang J, Frederick S (2004) Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neurosci Lett 355: 121–125PubMedGoogle Scholar
  54. 54.
    Kandel ER (1991) Cellular mechanisms of hearing and the biological basis of individuality. In: Kandel E, Schwartz J, Jessell T (eds) Principles of neural science. Appleton & Lange, Norwalk, Connecticut, pp 1009–1031Google Scholar
  55. 55.
    Kimbrell TA, Little JT, Dunn RT, Frye MA, Greenberg BD, Wassermann EM, Repella JD, Danielson AL, Willis MW, Benson BE, Speer AM, Osuch E, George MS, Post RM (1999) Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biol Psychiatry 46: 1603–1613PubMedGoogle Scholar
  56. 56.
    Kimbrell TA, Dunn RT, George MS, Danielson AL, Willis MW, Repella JD, Benson BE, Herscovitch P, Post RM, Wassermann EM (2002) Left prefrontal-repetitive transcranial magnetic stimulation (rTMS) and regional cerebral glucose metabolism in normal volunteers. Psychiatry Res 115: 101–113PubMedGoogle Scholar
  57. 57.
    Komiya H, Eggermont JJ (2000) Spontaneous firing activity of cortical neurons in adult cats with reorganized tonotopic map following pure-tone trauma. Acta Otolaryngol 120: 750–756PubMedGoogle Scholar
  58. 58.
    Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2001) Delayed maturation and sensitive periods in the auditory cortex. Audiol Neurootol 6: 346–362PubMedGoogle Scholar
  59. 59.
    Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2002) Hearing after congenital deafness: central auditory plasticity and sensory deprivation. Cereb Cortex 12: 797–807PubMedGoogle Scholar
  60. 60.
    Kral A, Tillein J, Heid S, Hartmann R, Klinke R (2005) Postnatal cortical development in congenital auditory deprivation. Cereb Cortex 15: 552–562PubMedGoogle Scholar
  61. 61.
    Langguth B, Eichhammer P, Wiegand R, Marienhegen J, Maenner P, Jacob P, Hajak G (2003) Neuronavigated rTMS in a patient with chronic tinnitus. Effects of 4 weeks treatment. Neuroreport 14: 977–980PubMedGoogle Scholar
  62. 62.
    Langguth B, Eichhammer P, Zowe M, Marienhagen J, Kleinjung T, Jacob P, Sand P, Hajak G (2004) Low frequency repetitive transcranial magnetic stimulation (rTMS) for the treatment of chronic tinnitus — are there long-term effects?. Psychiatr Prax 31Suppl 1: S52–S54PubMedGoogle Scholar
  63. 63.
    Leake PA, Snyder RL, Rebscher SJ, Moore CM, Vollmer M(2000) Plasticity in central representations in the inferior colliculus induced by chronic single-vs. two-channel electrical stimulation by a cochlear implant after neonatal deafness. Hear Res 147: 221–241PubMedGoogle Scholar
  64. 64.
    Llinas R, Ribary U, Joliot M, Wang X (1994) Content and context in temporal thalamocortical binding. In: Buzsaki G, Llinas R, Singer W (eds) Temporal coding in the brain. Springer-Verlag, Berlin, pp 251–272Google Scholar
  65. 65.
    Llinas R, Ribary U, Contreras D, Pedroarena C (1998) The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci 353: 1841–1849PubMedGoogle Scholar
  66. 66.
    Llinas R, Urbano FJ, Leznik E, Ramirez RR, van Marle HJ (2005) Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28: 325–333PubMedGoogle Scholar
  67. 67.
    Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 96: 15222–15227PubMedGoogle Scholar
  68. 68.
    MacDonald KD, Barth DS (1995) High frequency (gamma-band) oscillating potentials in rat somatosensory and auditory cortex. Brain Res 694: 1–12PubMedGoogle Scholar
  69. 69.
    Martin WH, Schwegler JW, Scheibelhoffer J, Ronis ML (1993) Salicylate-induced changes in cat auditory nerve activity. Laryngoscope 103: 600–604PubMedGoogle Scholar
  70. 70.
    Menon V, Freeman WJ, Cutillo BA, Desmond JE, Ward MF, Bressler SL, Laxer KD, Barbaro N, Gevins AS (1996) Spatiotemporal correlations in human gamma band electrocorticograms. Electroencephalogr Clin Neurophysiol 98: 89–102PubMedGoogle Scholar
  71. 71.
    Meyershoff W (1992) Tinnitus. In: Meyershoff W, Ria D (eds) Otolaryngology head and neck surgery. WB Saunders Company, Philadelphia, pp 435–446Google Scholar
  72. 72.
    Moller A (2003) Sensory systems: Anatomy, Physiology, and Pathophysiology. Academic Press, AmsterdamGoogle Scholar
  73. 73.
    Moller AR (1984) Pathophysiology of tinnitus. Ann Otol Rhinol Laryngol 93: 39–44PubMedGoogle Scholar
  74. 74.
    Muhlnickel W, Elbert T, Taub E, Flor H (1998) Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA 95: 10340–10343PubMedGoogle Scholar
  75. 75.
    Naatanen R, Paavilainen P, Tiitinen H, Jiang D, Alho K (1993) Attention and mismatch negativity. Psychophysiology 30: 436–450PubMedGoogle Scholar
  76. 76.
    Neve RL, Finch EA, Bird ED, Benowitz LI (1988) Growth-associated protein GAP-43 is expressed selectively in associative regions of the adult human brain. Proc Natl Acad Sci USA 85: 3638–3642PubMedGoogle Scholar
  77. 77.
    Nunez P (2002) Electroencephalography. In: Ramachandran V (ed) Encyclopedia of the human brain, vol 2. Academic Press, Amsterdam, pp 169–179Google Scholar
  78. 78.
    Ochi K, Eggermont JJ (1996) Effects of salicylate on neural activity in cat primary auditory cortex. Hear Res 95: 63–76PubMedGoogle Scholar
  79. 79.
    Ochi K, Eggermont JJ (1997) Effects of quinine on neural activity in cat primary auditory cortex. Hear Res 105: 105–118PubMedGoogle Scholar
  80. 80.
    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87: 9868–9872PubMedGoogle Scholar
  81. 81.
    Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18: 49–65PubMedGoogle Scholar
  82. 82.
    Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 17: 3178–3184PubMedGoogle Scholar
  83. 83.
    Phoon WH, Lee HS, Chia SE (1993) Tinnitus in noise-exposed workers. Occup Med (Lond) 43: 35–38Google Scholar
  84. 84.
    Plewnia C, Bartels M, Gerloff C (2003) Transient suppression of tinnitus by transcranial magnetic stimulation. Ann Neurol 53: 263–266PubMedGoogle Scholar
  85. 85.
    Puel JL (1995) Chemical synaptic transmission in the cochlea. Prog Neurobiol 47: 449–476PubMedGoogle Scholar
  86. 86.
    Puel JL, Ruel J, Guitton M, Wang J, Pujol R (2002) The inner hair cell synaptic complex: physiology, pharmacology and new therapeutic strategies. Audiol Neurootol 7: 49–54PubMedGoogle Scholar
  87. 87.
    Quaranta A, Assennato G, Sallustio V (1996) Epidemiology of hearing problems among adults in Italy. Scand Audiol Suppl 42: 9–13PubMedGoogle Scholar
  88. 88.
    Ribary U, Ioannides AA, Singh KD, Hasson R, Bolton JP, Lado F, Mogilner A, Llinas R (1991) Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc Natl Acad Sci USA 88: 11037–11041PubMedGoogle Scholar
  89. 89.
    Rubsamen R (1992) Postnatal development of central auditory frequency maps. J Comp Physiol [A] 170: 129–143Google Scholar
  90. 90.
    Sakai M, Suga N (2002) Centripetal and centrifugal reorganizations of frequency map of auditory cortex in gerbils. Proc Natl Acad Sci USA 99: 7108–7112PubMedGoogle Scholar
  91. 91.
    Salvi RJ, Wang J, Ding D (2000) Auditory plasticity and hyperactivity following cochlear damage. Hear Res 147: 261–274PubMedGoogle Scholar
  92. 92.
    Sanes DH, Song J, Tyson J (1992) Refinement of dendritic arbors along the tonotopic axis of the gerbil lateral superior olive. Brain Res Dev Brain Res 67: 47–55PubMedGoogle Scholar
  93. 93.
    Shevelev IA, Kostelianetz NB, Kamenkovich VM, Sharaev GA (1991) EEG alpha-wave in the visual cortex: check of the hypothesis of the scanning process. Int J Psychophysiol 11: 195–201PubMedGoogle Scholar
  94. 94.
    Sindhusake D, Mitchell P, Newall P, Golding M, Rochtchina E, Rubin G (2003) Prevalence and characteristics of tinnitus in older adults: the Blue Mountains Hearing Study. Int J Audiol 42: 289–294PubMedGoogle Scholar
  95. 95.
    Sininger YS, Doyle KJ, Moore JK (1999) The case for early identification of hearing loss in children. Auditory system development, experimental auditory deprivation, and development of speech perception and hearing. Pediatr Clin North Am 46: 1–14PubMedGoogle Scholar
  96. 96.
    Smits M, Kovacs S, De Ridder D, Peeters R, Van Hecke P, Sunaert S (2004) Lateralization of signal change in the auditory pathway in patients with lateralized tinnitus studied with functional Magnetic Resonance Imaging (fMRI). Radiology 233Suppl: abstract 12-06Google Scholar
  97. 97.
    Snyder RL, Leake PA (1997) Topography of spiral ganglion projections to cochlear nucleus during postnatal development in cats. J Comp Neurol 384: 293–311PubMedGoogle Scholar
  98. 98.
    Speer AM, Kimbrell TA, Wassermann EM, J DR, Willis MW, Herscovitch P, Post RM (2000) Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry 48: 1133–1141PubMedGoogle Scholar
  99. 99.
    Speer AM, Willis MW, Herscovitch P, Daube-Witherspoon M, Shelton JR, Benson BE, Post RM, Wassermann EM (2003) Intensity-dependent regional cerebral blood flow during 1-Hz repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers studied with H215O positron emission tomography: II. effects of prefrontal cortex rTMS. Biol Psychiatry 54: 826–832PubMedGoogle Scholar
  100. 100.
    Staecker H, Galinovic-Schwartz V, Liu W, Lefebvre P, Kopke R, Malgrange B, Moonen G, Van De Water TR (1996) The role of the neurotrophins in maturation and maintenance of postnatal auditory innervation. Am J Otol 17: 486–492PubMedGoogle Scholar
  101. 101.
    Steriade M, Amzica F, Contreras D (1996) Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation. J Neurosci 16: 392–417PubMedGoogle Scholar
  102. 102.
    Steriade M (2000) Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101: 243–276PubMedGoogle Scholar
  103. 103.
    Suga N, Zhang Y, Yan J (1997) Sharpening of frequency tuning by inhibition in the thalamic auditory nucleus of the mustached bat. J Neurophysiol 77: 2098–2114PubMedGoogle Scholar
  104. 104.
    Suga N, Gao E, Zhang Y, Ma X, Olsen JF (2000) The corticofugal system for hearing: recent progress. Proc Natl Acad Sci USA 97: 11807–11814PubMedGoogle Scholar
  105. 105.
    Tiitinen H, Sinkkonen J, Reinikainen K, Alho K, Lavikainen J, Naatanen R (1993) Selective attention enhances the auditory 40-Hz transient response in humans. Nature 364: 59–60PubMedGoogle Scholar
  106. 106.
    Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6: 391–398PubMedGoogle Scholar
  107. 107.
    Walsh V, Ashbridge E, Cowey A (1998) Cortical plasticity in perceptual learning demonstrated by transcranial magnetic stimulation. Neuropsychologia 36: 45–49PubMedGoogle Scholar
  108. 108.
    Walsh V, Ashbridge E, Cowey A (1998) Cortical plasticity in perceptual learning demonstrated by transcranial magnetic stimulation. Neuropsychologia 36: 363–367PubMedGoogle Scholar
  109. 109.
    Walsh V, Rushworth M (1999) A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia 37: 125–135PubMedGoogle Scholar
  110. 110.
    Weedman DL, Ryugo DK (1996) Pyramidal cells in primary auditory cortex project to cochlear nucleus in rat. Brain Res 706: 97–102PubMedGoogle Scholar
  111. 111.
    Weisz N, Voss S, Berg P, Elbert T (2004) Abnormal auditory mismatch response in tinnitus sufferers with high-frequency hearing loss is associated with subjective distress level. BMC Neurosci 5: 8PubMedGoogle Scholar
  112. 112.
    Whitehead MC, Morest DK (1985) The development of innervation patterns in the avian cochlea. Neuroscience 14: 255–276PubMedGoogle Scholar
  113. 113.
    Winer JA, Larue DT (1987) Patterns of reciprocity in auditory thalamocortical and corticothalamic connections: study with horseradish peroxidase and autoradiographic methods in the rat medial geniculate body. J Comp Neurol 257: 282–315PubMedGoogle Scholar
  114. 114.
    Winer JA, Larue DT, Diehl JJ, Hefti BJ (1998) Auditory cortical projections to the cat inferior colliculus. J Comp Neurol 400: 147–174PubMedGoogle Scholar
  115. 115.
    Winer JA, Diehl JJ, Larue DT (2001) Projections of auditory cortex to the medial geniculate body of the cat. J Comp Neurol 430: 27–55PubMedGoogle Scholar
  116. 116.
    Winer JA, Chernock ML, Larue DT, Cheung SW (2002) Descending projections to the inferior colliculus from the posterior thalamus and the auditory cortex in rat, cat, and monkey. Hear Res 168: 181–195PubMedGoogle Scholar
  117. 117.
    Zacharek MA, Kaltenbach JA, Mathog TA, Zhang J (2002) Effects of cochlear ablation on noise induced hyperactivity in the hamster dorsal cochlear nucleus: implications for the origin of noise induced tinnitus. Hear Res 172: 137–143PubMedGoogle Scholar
  118. 118.
    Zeman A (2002) Consciousness, a user’s guide. Yale University Press, New HavenGoogle Scholar
  119. 119.
    Zhang JS, Kaltenbach JA (1998) Increases in spontaneous activity in the dorsal cochlear nucleus of the rat following exposure to high-intensity sound. Neurosci Lett 250: 197–200PubMedGoogle Scholar
  120. 120.
    Zhang Y, Suga N (2000) Modulation of responses and frequency tuning of thalamic and collicular neurons by cortical activation in mustached bats. J Neurophysiol 84: 325–333PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Dirk De Ridder
    • 2
  • G. De Mulder
    • 2
  • E. Verstraeten
    • 3
  • M. Seidman
    • 6
  • K. Elisevich
    • 6
  • S. Sunaert
    • 4
  • S. Kovacs
    • 4
  • K. Van der Kelen
    • 2
  • P. Van de Heyning
    • 2
  • A. Moller
    • 5
  1. 1.Department of NeurosurgeryUniversity Hospital AntwerpEdegemBelgium
  2. 2.Department of Neurosurgery and OtorhinolaryngologyUniversity Hospital AntwerpBelgium
  3. 3.Department of PsychologyFree University BrusselsBelgium
  4. 4.Department of RadiologyUniversity Hospital LouvainBelgium
  5. 5.School of Behavioral and Brain SciencesUniversity of Texas at DallasUSA
  6. 6.Department of Otolaryngology and NeurosurgeryHenry Ford Health SystemDetroitUSA

Personalised recommendations