Robot-aided rehabilitation of neural function in the upper extremities

Part of the Acta Neurochirurgica Supplements book series (NEUROCHIRURGICA, volume 97/1)


Repetitive movements can improve muscle strength and movement coordination in patients with neurological disorders and impairments. Robot-aided approaches can serve to enhance the rehabilitation process. They can not only improve the therapeutic outcome but also support clinical evaluation and increase the patient motivation. This chapter provides an overview of existing systems that can support the movement therapy of the upper extremities in subjects with neurological pathologies. The devices are compared with respect to technical function, clinical applicability, and clinical outcomes.


Robotics neurorehabilitation movement therapy paralysis stroke hemiplegics tetraplegics upper extremities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT (1997) The effect of robot-assisted therapy and rehabilitive training on motor recovery following stroke. Arch Neurol 54: 443–446PubMedGoogle Scholar
  2. 2.
    Basmajian JV, Gowland CA, Finlayson MA (1987) Stroke treatment: comparison of integrated behavioural-physical therapy vs traditional physical therapy programs. Arch Phys Med Rehabil 68: 267–272PubMedGoogle Scholar
  3. 3.
    Burdea G, Popescu V, Hentz V, Colbert K (2000) Virtual realitybased orthopedic telerehabilitation. IEEE Trans Rehab Eng 8: 430–432CrossRefGoogle Scholar
  4. 4.
    Coote S, Stokes EK, Amirabdollahian F, Loureiro R, Harwin W (2002) Robot mediated therapy for the upper extremity post stroke. Irish J Med Sci 170: 127Google Scholar
  5. 5.
    Coote S, Stoke E, Murphy B, Harwin W (2003) The effect of GENTLE/s robot-mediated therapy on upper extremity dysfunction post stroke. Proc 8th ICORR 2003, pp 59–63Google Scholar
  6. 6.
    Coote S, Stokes EK (2003) The GENTLE/s clinical trial: effect of treatment on maximal voluntary isometric contraction. Proc 7th Conf AAATE Dublin, p 78Google Scholar
  7. 7.
    Cozens JA (1999) Robotic assistance of an active upper limb exercise in neurologically impaired patients. IEEE Trans Rehab Eng 7: 254–256CrossRefGoogle Scholar
  8. 8.
    Dickstein R, Hocherman S, Pillar T, Shaham R (1986) Stroke rehabilitation. Three exercise therapy approaches. Phys Ther 66: 1233–1238PubMedGoogle Scholar
  9. 9.
    Fasoli SE, Krebs HI, Stein JS, Frontera WR, Hogan N (2003) Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil 84: 477–482PubMedCrossRefGoogle Scholar
  10. 10.
    Feys HM, De Weert WJ, Selz BE, Cox Steck GA, Spichiger R, Vereeck LE, Putman KD, Van Hoydonck GA (1998) Effect of a therapeutic intervention for the hemiplegic upper limb in the acute phase after stroke: a single-blind, randomized, controlled multicenter trial. Stroke 29: 785–792PubMedGoogle Scholar
  11. 11.
    Harwin W, Loureiro R, Amirabdollahian F, Taylor M, Johnson G, Stokes E, Coote S, Topping M, Collin C et al (2001) The Gentle/s project: a new method for delivering neur-rehabilitation. Assistive technology — added value to the quality of life AAATE’01. In: Marincek C et al (eds) IOS Press, Amsterdam, pp 36–41Google Scholar
  12. 12.
    Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C (2003) Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 84: 915–920PubMedCrossRefGoogle Scholar
  13. 13.
    Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML (2005) Computerized arm training improves the motor control of the severely affected arm after stroke. Stroke 36: 1960–1966PubMedCrossRefGoogle Scholar
  14. 14.
    Hogan N (1985) Impedance control: an approach to manipulation, parts I, II, and III. J Dynamic Syst Measurement Control 107: 1–23CrossRefGoogle Scholar
  15. 15.
    Hogan N, Krebs HI, Sharon A, Charnnarong J (1995) Interactive robotic therapist. US Patent 5466213Google Scholar
  16. 16.
    Jack D, Boian R, Merians AS, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H (2001) Virtual reality-enhanced stroke rehabilitation. IEEE Trans Neural Systems Rehab Eng 9: 308–318CrossRefGoogle Scholar
  17. 17.
    Jezernik S, Schärer R, Colombo G, Morari M (2003) Adaptive robotic rehabilitation of locomotion: a clinical study in spinally injured individuals. Spinal Cord 41: 657–666PubMedCrossRefGoogle Scholar
  18. 18.
    Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-aided neurorehabilitation. IEEE Trans Rehab Eng 6: 75–87CrossRefGoogle Scholar
  19. 19.
    Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC (1997) Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke 28: 1550–1556PubMedGoogle Scholar
  20. 20.
    Kwakkel G, Wagenaar RC, Twisk JWR, Lankhorst GJ, Koetsier JC (1999) Intensity of leg and arm training after primary middlecerebral-artery stroke: a randomised trial. Lancet 35: 191–196CrossRefGoogle Scholar
  21. 21.
    Kwakkel G, Kollen BJ, Wagenaar RC (2002) Long term effects of upper and lower limb training after stroke: a randomised trial. JNNP 72: 473–479Google Scholar
  22. 22.
    Kwee H, Duimel J, Smit J, de Moed AT, vanWoerden J, Kolk LVD (1988) The manus wheelchair-mounted manipulator: developments toward a production model. Proc 3rd Int Conf Assoc Advancement Rehab Technol, pp 460–462Google Scholar
  23. 23.
    Langhammer B, Stanghelle JK (2000) Bobarth or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomised controlled study. Clin Rehabil 14: 361–369PubMedCrossRefGoogle Scholar
  24. 24.
    Leifer L (1981) Rehabilitive robotics. Robot Age, pp 4–11Google Scholar
  25. 25.
    Lord JP, Hall K (1986) Neuromuscular re-education versus traditional programs for stroke rehabilitation. Arch Phys Med Rehabil 67: 88–91PubMedCrossRefGoogle Scholar
  26. 26.
    Lum PS, Reinkensmeyer DJ, Lehman SL (1993) Robotic assist devices for bimanual physical therapy: preliminary experiments. IEEE Trans Rehab Eng 1: 185–191CrossRefGoogle Scholar
  27. 27.
    Lum PS, Lehman SL, Reinkensmeyer DJ (1995) The bimanual lifting rehabilitator: an adaptive machine for therapy of stroke patients. IEEE Trans Rehab Eng 3: 166–174CrossRefGoogle Scholar
  28. 28.
    Lum PS, Burgar CG, Shor PC, Majmundar M, van der Loos M (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 83: 952–959PubMedCrossRefGoogle Scholar
  29. 29.
    Nef T, Riener R (2004) Design of the arm rehabilitation robot ARMin, Internal Report. Automatic Control Laboratory, Swiss Federal Institute of Technology (ETH), Zurich, SwitzerlandGoogle Scholar
  30. 30.
    Platz T (2003) Evidenzbasierte Armrehabilitation: Eine systematische Literaturübersicht. Nervenarzt 74: 841–849PubMedCrossRefGoogle Scholar
  31. 31.
    Popescu VG, Burdea GC, Bouzit M, Hentz VR (2000) A virtualreality-based telerehabilitation system with force feedback. IEEE Trans Inform Technol Biomed 4: 45–51CrossRefGoogle Scholar
  32. 32.
    Riener R, Fuhr T (1998) Patient-driven control of FES-supported standing-up: a simulation study. IEEE Trans Rehabil Eng 6: 113–124PubMedCrossRefGoogle Scholar
  33. 33.
    Seahak K, Somsak W, Masahiro I, Yasuharu K, Sato M (1998) Personal VR system for rehabilitation to hand movement. Proc 7th International Conference on Artificial Reality and Teleexistence, pp 102–108Google Scholar
  34. 34.
    Taub E, Miller NE, Novack TA, Cook EW, Fleming WC, Nepomuceno CS, Connell JS, Crago JE (1993) Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehab 74: 347–354Google Scholar
  35. 35.
    Sunderland A, Tinson DJ, Bradley EL, Fletcher D, Langton HR, Wade DT (1992) Enhanced physical therapy improves recovery of arm function after stroke. A randomised controlled trial. J Neurol Neursurg Psychiatry 55: 530–535CrossRefGoogle Scholar
  36. 36.
    Schleenbaker RE, Mainous AG (1993) Electromyographical biofeedback for neuromuscular re-education in the hemiplegic stroke patient: a meta-analysis, Arch Phys Med Rehabil 74: 1301–1304PubMedCrossRefGoogle Scholar
  37. 37.
    Sonde L, Gip C, Fernaeus SE, Nilsson CG, Vitanen M (1998) Stimulation with low frequency (1.7 Hz) transcutaneous electric nerve stimulation (low-tens) increases motor function of the poststroke paretic arm. Scand J Rehabil Med 30: 95–99PubMedCrossRefGoogle Scholar
  38. 38.
    Van der Linde RQ, Lammertse P, Frederiksen E, Ruiter B (2002) The Haptic Master, a new nigh-performance haptic interface. Proc Eurohaptics, Edinburgh, UK, pp 1–5Google Scholar
  39. 39.
    Van der Loos HFM, Michalowski SJ, Leifer JL (1988) Development of an omnidirectional mobile vocational assistant robot. Proc 3rd Int Conf Assoc Advancement Rehab Technol, pp 468–469Google Scholar
  40. 40.
    Volpe BT, Krebs HI, Hogan N, Edelstein L, Diels C, Aisen M (2000) A novel approach to stroke rehabilitation. Neurology 54: 1938–1944PubMedGoogle Scholar
  41. 41.
    Volpe BT, Ferraro M, Krebs HI, Hogan N (2002) Robotics in the rehabilitation treatment of patients with stroke. Current Atherosclerosis Reports 4: 270–276PubMedGoogle Scholar
  42. 42.
    Wagenaar RC, Meijer OG, van Wieringen PC, Kuik DJ, Hazenberg GJ, Lindeboom J, Wichers F, Rijswijk H (1990) The functional recovery of stroke: a comparison between neuro-developmental treatment and the Brunnstrom method. Scan J Rehabil Med 22: 1–8Google Scholar
  43. 43.
    Zinn M, Roth B, Khatib O, Salisbury JK (2004) A new actuation approach for human friendly robot design. Int J Robotics Research 23: 379–398CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Rehabilitation Engineering Group, Automatic Control LaboratorySwiss Federal Institute of Technology (ETH)ZurichSwitzerland
  2. 2.Spinal Cord Injury Center, University Hospital BalgristUniversity of ZurichZurichSwitzerland

Personalised recommendations