Neural prostheses in clinical practice: biomedical microsystems in neurological rehabilitation

  • Thomas StieglitzEmail author
Part of the Acta Neurochirurgica Supplements book series (NEUROCHIRURGICA, volume 97/1)


Technical devices have supported physicians in diagnosis, therapy, and rehabilitation since ancient times. Neural prostheses interface parts of the nervous system with technical (micro-) systems to partially restore sensory and motor functions that have been lost due to trauma or diseases. Electrodes act as transducers to record neural signals or to excite neural cells by means of electrical stimulation. The field of neural prostheses has grown over the last decades. An overview of neural prostheses illustrates the opportunities and limitations of the implants and performance in their current size and complexity. The implementation of microsystem technology with integrated microelectronics in neural implants 20 years ago opened new fields of application, but also new design paradigms and approaches with respect to the biostability of passivation and housing concepts and electrode interfaces. Microsystem specific applications in the peripheral nervous system, vision prostheses and brain-machine interfaces show the variety of applications and the challenges in biomedical microsystems for chronic nerve interfaces in new and emerging research fields that bridge neuroscientific disciplines with material science and engineering. Different scenarios are discussed where system complexity strongly depends on the rehabilitation objective and the amount of information that is necessary for the chosen neuro-technical interface.


Neural prostheses implant biomedical microsystems brain-computer-interface motor prostheses vision prostheses neuromodulation electrical stimulation recording nerve interface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol (Lond) 196: 479–493PubMedGoogle Scholar
  2. 2.
    Brindley GS (1973) Emptying the bladder by stimulating sacral ventral roots. J Physiol 237: 15P–16PGoogle Scholar
  3. 3.
    Brindley GS (1994) The first 500 patients with sacral anterior root stimulator implants: general description. Paraplegia 32: 795–805PubMedGoogle Scholar
  4. 4.
    Cavuoto J (2004) Neural engineering’s image problem. IEEE Spectrum 41(4): 20–25CrossRefGoogle Scholar
  5. 5.
    Cogan DG (1969) So the blind may’ see’. New Engl J Med 281: 215–216PubMedCrossRefGoogle Scholar
  6. 6.
    Heiduschka P, Thanos S (1998) Implantable bioelectronic interfaces for lost nerve functions. Prog Neurobiol 55: 433–461PubMedCrossRefGoogle Scholar
  7. 7.
    Horch K, Dhillon G (eds) (2004) Neuroprothetics: theory and practice (series on bioengineering and biomedical engineering vol. 2) World Scientific Publishing, River Edge London SingaporeGoogle Scholar
  8. 8.
    Judson JP, Glen WWL (1968) Radiofrequency electrophrenic respiration: long term application to a patient with primary hypoventilation. J Am Med Assoc 203: 1033–1037CrossRefGoogle Scholar
  9. 9.
    Liberson WT, Holmquest HJ, Scott D, Dow A (1961) Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of hemiplegic patients. Arch Phys Med Rehab 42: 101–105Google Scholar
  10. 10.
    Maynard EM, Nordhausen CT, Normann RA (1997) The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephal Clin Neurophysiol 102: 228–239CrossRefGoogle Scholar
  11. 11.
    Mokwa W (2004) MEMS technologies for epiretinal stimulation of the retina. J Micromech Microeng 14: S12–S16CrossRefGoogle Scholar
  12. 12.
    Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Periph Nerv Syst 10: 229–258CrossRefGoogle Scholar
  13. 13.
    Rijkhoff NJM (2004) Neuroprostheses to treat neurogenic bladder dysfunction:current status and future perspectives. Childs Nerv Syst 20: 75–86PubMedCrossRefGoogle Scholar
  14. 14.
    Rutten WLC (2002) Selective electrical interfaces with the nervous system. Annu Rev Biomed Eng 4: 407–452PubMedCrossRefGoogle Scholar
  15. 15.
    Stieglitz T, Meyer JU (2005) Neural implants in clinical practice. In: Urban GA (ed) BioMEMS, Springer, Berlin Heidelberg New York (in press)Google Scholar
  16. 16.
    Stieglitz T, Meyer JU (2006) Biomedical microdevices for neural implants. In: Urban GA (ed) BioMEMS. Springer, Berlin Heidelberg New York (in press)Google Scholar
  17. 17.
    Stieglitz T, Koch KP, Schuettler M (2005) Flexible, polyimidebased modular implantable biomedical microsystems for neural prostheses. IEEE Eng Med Biol Mag 24(5): 58–65PubMedCrossRefGoogle Scholar
  18. 18.
    Stieglitz T (2004) Considerations on surface and structural biocompatibility as prerequisite for long-term stability of neural prostheses. J Nanosci Nanotechnol 4: 496–503PubMedCrossRefGoogle Scholar
  19. 19.
    Stieglitz T, Schuettler M, Koch KP (2004) Neural prostheses in clinical applications — trends from precision mechanics towards biomedical microsystems in neurological rehabilitation. Biomed Techn 49: 72–77CrossRefGoogle Scholar
  20. 20.
    Veraart C, Duret F, Brelén M, Oozeer M, Delbeke J (2004) Vision rehabilitation in the case of blindness. Expert Rev Med Dev 1: 139–153CrossRefGoogle Scholar
  21. 21.
    Walter P, Kisvárday ZF, Görtz M, Alteheld N, Rössler G, Stieglitz T, Eysel UT (2005) Cortical activation with a completely implanted wireless retinal prosthesis. Invest Ophthal Vis Sci 46: 1780–1785PubMedCrossRefGoogle Scholar
  22. 22.
    Wise KD, Anderson DJ, Hetke JF, Kipke DR, Najafi K (2004) Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE 92: 76–97CrossRefGoogle Scholar
  23. 23.
    Zeng FG (2004) Trends in cochlear implants. Trends Amplif 8: 1–34PubMedCrossRefGoogle Scholar
  24. 24.
    Zrenner E, Gekeler F, Gabel VP, Graf HG, Graf M, Guenther E, Haemmerle H, Hoefflinger B, Kobuch K, Kohler K, Nisch W, Sachs H, Schlosshauer B, Schubert M, Schwahn H, Stelzle M, Stett A, Troeger B, Weiss S (2001) Subretinal microphotodiode array as replacement for degenerated photoreceptors? Ophthalmologe 98: 357–363PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratory for Biomedical Microtechnology, Department of Microsystems EngineeringUniversity of Freiburg-IMTEKFreiburgGermany

Personalised recommendations