Advertisement

Lungenversagen

Chapter
  • 1.9k Downloads

Auszug

Das akute Lungenversagen ist eine schwere diffuse entzündliche Erkrankung der Lunge. Nach der „American-European Consensus Conference“ (Bernard et al., 1994) wird zwischen einem ARDS — acute respiratory distress syndrom und einem ALI — acute lung injury unterschieden.

Literatur

  1. Abraham E, Neutrophils and acute lung injury. Crit Care Med 31: S195–S199: 2003PubMedCrossRefGoogle Scholar
  2. Adams AB, Simonson DA, Dries DJ, Ventilator-induced lung injury. Respir Care Clin N Am 9(3): 343–362: September 2003PubMedCrossRefGoogle Scholar
  3. Amato MBP, Barbas CSV, Medeiros DM et al, Beneficial effects of the “Open lung Approach” with low distending pressures in acute respiratory distress syndrom; A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 152: 1835–1846: 1995PubMedGoogle Scholar
  4. Amato MBP et al, Effect of a protective-ventilation strategy on mortality in the acute respiratory di stress syndrome. The New England Journal of Medicine 338: 347–354: February 1998PubMedCrossRefGoogle Scholar
  5. Anzueto A, Frutos-Vivar F, Esteban A, Alia I, Brochard L, Steward T, Benito S, Tobin MJ, Elizalde J, Palizas F, David CM, Pimentl J, Gonzalez M, Soto L, D’Empaire G, Pelosi P, Incidence, risk factors and outcome of barotrauma in mechanically ventilated patients. Intensive Care Med 30(4):612–619: April 2004PubMedCrossRefGoogle Scholar
  6. The ARDS Network. Ketoconazole for early treatment of acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 283: 1995–2002: 2000CrossRefGoogle Scholar
  7. The ARDS clinical trials network. Randomized, placebo-controlled trial of lisofylline for early treatment of acute lung injury and acute respiratory distress syndrome. Crit Care Med 30: 1–6: 2002CrossRefGoogle Scholar
  8. Bartlett R, Extracorporeal life support: History and new directions. American Society of Artificial Internals Organs 51(5): 487–489: September/October 2005Google Scholar
  9. Baum M, Benzer H, Geyer A, Haider W, Mutz N, Forced diffusion ventilation (FDV), bases and clinical application. 29(11): 586–591: 1980Google Scholar
  10. Bensberg R, Dembinski R, Kopp R, Kuhlen R, Artificial lung and extracorporeal gas exchange. Panminerva Med 47(1):11–17: Mar 2005PubMedGoogle Scholar
  11. Bernard GR, Artigas A, Brigham KL et al, The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149(3Pt1): 818–824: 1994PubMedGoogle Scholar
  12. Bhattacharya S, Sen N, Yiming MT, Patel R, Parthasarathi K, Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GPP, Filho GL, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CRR, Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338: 347–354: 1998CrossRefGoogle Scholar
  13. Blanch L, Fernandez R, Lopez-Aguilar J, Recruitment maneuvers in acute lung injury. Respir Care Clin N Am 8(2): 281–294: June 2002PubMedCrossRefGoogle Scholar
  14. Baudouin SV, Exogenous surfactant replacement in ARDS — one day, someday, or never? N Engl J Med 351: 853–855: 2004PubMedCrossRefGoogle Scholar
  15. Bernard GR, Lucht WD, Niedermeyer ME et al., Effect of Nacetylcystein on the pulmonary response to endotoxin in the awake sheep and upon in vitro granulocyte function. J Clin Ivest 73: 1772–1784: 1984CrossRefGoogle Scholar
  16. Bernard GGR, Wheeler AP, Arons MM et al., A trial of antioxidans N-acetylcysteine and procysteine in ARDS. The antioxidant in ARDS study group Chest. 112: 164–172: 1997Google Scholar
  17. Böhm S, Suarez Sipmann F, Lachmann B, Das Konzept der offenen Lunge. Intensivmedizin 36:Suppl I, 131–134: 1999Google Scholar
  18. Calkovska A, Sevecova-Mokra D, Javorka K, Petraskova M, Adamicoca K, Exogenous surfactant administration by asymmetric high-frequency jet ventilation in experimental respiratory distress syndrome. Croat Med J 46(2): 209–217: April 2005PubMedGoogle Scholar
  19. Carvalho CRR, Barbas CSV, Medeiros DM, Magaldi RB, Filho GL, Kairalla RA, Deheinzelin D, Munholz C, Kaufmann M, Ferreira M, Takagaki TY, Amato MBP, Temporal hemodynamic effects of permissive hyperkapnia associated with ideal PEEP in ARDS. Am J Repir Crit Care Med 156:1458–1466: 1997Google Scholar
  20. Cepkova MC, Matthay MA, Pharmacotherapy of acute lung injury and the acute respiratory distress syndrome. 21:119–143: 2006Google Scholar
  21. Chang HK, Mechanisms of gas transport during ventilation by high-frequency oscillation. J Appl Physiol 56(3): 553–563: March 1984PubMedGoogle Scholar
  22. Christiansen S, Renzing K, Hirche H, Reidemeister JC, Messungen des Feuchtigkeitsgehaltes der Inspirationsluft bei beatmeten Patienten bei verwendung verschiedener Befeuchtungssysteme. AINS 33: 300–305: 1998PubMedGoogle Scholar
  23. Cortiella J, Mlcak R, Herndon D, High frequency percussive ventilation in pediatric patients with inhalation injury. J Burn Care Rehabil 20(3): 232–235: 1999PubMedCrossRefGoogle Scholar
  24. Derdak Stephen, Metha S, Steward T, Smith T, Rogers M, Buchmann T, Carlin B, Lowson S, Granton J and the multicenter oscillatory ventilation for acute respiratory distress syndrome TRIAL (MOAT) study investigators, High frequency oscillatory ventilation for acute respiratory distress syndrome in adults. Am J Respir Crit Care Med 166:801–808: 2002PubMedCrossRefGoogle Scholar
  25. Due V, Johnson D, High frequency oscillatory ventilation in the management of a high output bronchopleural fistula: a case report. Canadian J Anesthesia 51: 78–83: 2004Google Scholar
  26. Durante G, Turco M, Rustichini L, Cosimini P, Giunta F, Hudson L, Slutsky AS, Ranieri VM, ARDSNet lower tidal volume ventilatory strategy may generate intrinsic positive end-expiratory pressure in patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 165:1271–1274: 2002PubMedCrossRefGoogle Scholar
  27. Eisner MD, Thompson T, Hudson LD, Luce JM, Hayden D, Schoenefeld D, Matthay MA, The acute respiratory distress syndrom network: Efficacy of low tidal volume ventilation in patients with different clinical risk factors for acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 164: 231–236: 2001PubMedGoogle Scholar
  28. El-Baz N, Penfield Faber L, Doolas A, Combined high-frequency ventilation for management of terminal respiratory failure: a new technique. Anesth Analg 62: 39–49: 1983PubMedCrossRefGoogle Scholar
  29. Ferguson ND, Chiche JD, Kacmarek RM, Hallett DC, Metha S, Findlay GP, Granton JT, Slutsky AS, Stewart TE, Combining high-frequency oscillatory ventilation and recruitment maneuvers in adults with early acute respiratory distress syndrome: the treatment with oscillation and an Open Lung Strategy (TOOLS) trial pilot study. Crit Care Med 33(3): 479–486: March 2005PubMedCrossRefGoogle Scholar
  30. Froese AB, Bryan AC, High frequency ventilation — state of art. Am Rev Respir dis 135: 1363–1374: 1987PubMedGoogle Scholar
  31. Ganiere V, Feihl F, Tagan D, Dramatic beneficial effects of sildenafil in recurrent massive pulmonary embolism. Intensive Care Med 1: 1–3: 2006Google Scholar
  32. Gattinoni L, Pesenti A, The concept of „baby lung”. Intensive Care Med 31: 776–784: 2005PubMedCrossRefGoogle Scholar
  33. Gattinoni L, Luca DA, Pelosi P, Vitale G, Pesenti A, Fumagalli R, Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA 269(16): 2122–2127: April 1993PubMedCrossRefGoogle Scholar
  34. Gattinoni L, Pelosi P, Crotti S, Valenza F, Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J respir Crit Care Med 151: 1807–1814: 1995PubMedGoogle Scholar
  35. Griffiths MJD, Evans TW, Inhaled Nitric Oxide therapy in adults. New Engl J Med 353: 2683–2695: Dec 2005PubMedCrossRefGoogle Scholar
  36. Günther A, Schmidt R, Harodt J, Seeger W et al, Bronchoskopic administration of bovine natural surfactant in ARDS and septic shock: impact on biophysical and biochemical surfactant properties. Eur Respir J 19: 797–804: 2002PubMedCrossRefGoogle Scholar
  37. Gutierrez JA, Levin DL, Toro-Figuerosa LO, Hemodynamic effects of high-frequency oscillatory ventilation in severe pediatric respiratory failure. Intensive Care Med 21:505–510: 1995PubMedCrossRefGoogle Scholar
  38. Haitsma JJ, Lachmann RA, Lachmann B, Open lung in ARDS: Acta pharmacol Sin. 24(12): 1304–1307: Dec 2003PubMedGoogle Scholar
  39. Henzler D, Dembinski R, Kopp R, Hawickhorst R, Rossaint R, Kuhlen R, Therapie des akuten Lungenversagens in einem Behandlungszentrum; Der Erfolg ist abhängig von der Indikationsstellung. Anaesthesist 53: 235–243: 2004PubMedCrossRefGoogle Scholar
  40. Hormann C, Baum M, Putensen C, Mutz NJ, Benzer H, Biphasic positive airway pressure (BIPAP)-a new mode of ventilatory support. Eur J Anaesthesiol 11(1): 37–42: 1994PubMedGoogle Scholar
  41. Hörmann CH, Benzer H, Putz g, Wicke K, Kinetische Therapie beim ARDS. Intensivmedizin 30: 161–167: 1993Google Scholar
  42. Kolla S, Awad S, Rich P, Schreiner R, Hirschl R, Bartlett R, Extracorporeal life support for 100 adult patients with severe respiratory failure. Annals of Surgery 226(4): 544–566: October 1997PubMedCrossRefGoogle Scholar
  43. Kopp R, Henzler D, Dembinski R, Kuhlen R, Extrakorporale Membranoxygenierung beim akuten Lungenversagen. Anaesthesist 53: 168–174: 2004PubMedCrossRefGoogle Scholar
  44. Koutsoukou A, Turn the ARDS patient prone to improve oxygenation and decrease risk of lung injury. Intensive Care Med 31: 174–176: 2005PubMedCrossRefGoogle Scholar
  45. Kraincuk P, Körmöczi G, Prokop M, Ihra G, Aloy A. Alveolar recruitment of atelektasis under combined high-frequency jet-ventilation: a computed tomography study. Intensive Care Med 29: 1265–1272: 2003PubMedCrossRefGoogle Scholar
  46. Kregenow DA, Rubenfeld GD, Hudson LD, Swenson ER. Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med 34(1): 229–231: 2006CrossRefGoogle Scholar
  47. Krieg P, Wahlers T, Giess W, Rohde R, Hartrumpf M, Bund M, Haverich A, Inhaled nitric oxide and inhaled prostaglandin E 1: effect on left ventricular contractility when used for treatment of experimental pulmonary hypertension. Eur J Cardiothorac Surg 14(5): 494–502: November 1998PubMedCrossRefGoogle Scholar
  48. Krishnan JA, Broer RG, High-frequency ventilation for acute lung injury and ARDS. Chest 118(3): 795–807: September 2000PubMedCrossRefGoogle Scholar
  49. Kudoh I, Ohtake M, Nishizawa H et al., The effect of pentoxifylline on acid-induced alveolar epithelial injury. Anesthesiology 82: 531–541: 1995PubMedCrossRefGoogle Scholar
  50. Kuhlen R, Rossaint R, Die Intensivtherapie bei akutem Lungenversagen. Steinkopf Verlag: 2003Google Scholar
  51. Lachmann B, Open up the lung and keep the lung open. Intensive Care Med 118: 319–321: 1992CrossRefGoogle Scholar
  52. Lamm WJE, Graham MM, Albert R, Mechanism by wich the prone position improves oxygenation in acute lung injury Am J Respir Care Med 150: 184–193: 1994Google Scholar
  53. Langer M, Mascheroni D, Marcolin R, Gattinoni L The prone position in ARDS patients. A clinical study. Chest 94:103–107: 1988PubMedGoogle Scholar
  54. Lewandowski K, Extracorporeal membrane oxygenation for severe acute respiratory failure. Crit Care 4(3): 156–168: 2004CrossRefGoogle Scholar
  55. Lewandowski K, Rossaint R, Pappert D, Gerlach H, Slama KJ, Weidemann H, Frey DJ, Hoffmann O, Keske U, Falke KJ, High survival rate in 122 ARDS patients managed according to a clinical algorithm including extracorporeal membrane oxygenation. Intensive Care Med 23(8): 803–805: August 1997CrossRefGoogle Scholar
  56. Lim CM, Jung H, Koh Y, Lee JS, Shim TS, Lee SD, Kim WS, Kim I, Kim WD, Effect of alveolar recruitment maneuver in early acute respiratory distress syndrome according to antiderecruitment strategy, etiological category of diffuse lung injury, and body position of the patient. Crit Care Med 31(2): 411–448: February 2003PubMedCrossRefGoogle Scholar
  57. Linden V, Palmer K, Reinhard J, Westman R, Ehren H, Granholm T, Frenckner B, Inter-hospital transportation of patients with severe acute respiratory failure on extracorporeal membrane oxygenation — national and international experience. Intensive Care Med 27(10): 1643–1648: October 2001PubMedCrossRefGoogle Scholar
  58. Lorraine N, Tremblay, Slutsky A, Ventilator-Induced Injury: From Barotrauma to Biotrauma. Proceedings of the Association of American Physicians 110(6): 482–488: 1998Google Scholar
  59. Loscar M, Hummel T, Haller M, Briegel J, Wiebecke B, Samtleben W, Berger H, Eichhorn P, Schelling G, ARD und Wegener-Granulomatose. Anaesthesist 46: 969–973: 1997PubMedCrossRefGoogle Scholar
  60. Luce JM, MD, FCCM: Acute lung injury and the acute respiratory distress syndrome. Crit Care Med 26: 369–376: 1998PubMedCrossRefGoogle Scholar
  61. Luecke T, Herrmann P, Qintel M, Hochfrequenzventilation (HFO) bei akuter Lungenschädigung und ARDS. Anaesthesist 49: 972–980: 2000PubMedCrossRefGoogle Scholar
  62. Lunkenheimer PP et al, Application of transtracheal pressure oscillations as a modification of “diffusing respiration”. Br J Anaesth 44(6): 627: June 1972PubMedCrossRefGoogle Scholar
  63. Malarkkan N, Snook NJ, Lumb AB, New aspects of ventilation in acute lung injury-review article. Anaesthesia 58(7): 647–667: July 2003PubMedCrossRefGoogle Scholar
  64. Markstaller K et al, Temporal dynamics of lung aeration determined by dynamic CT in a porcine model of ARDS. Brit J Anaesthesia 87(3): 459–468: 2001CrossRefGoogle Scholar
  65. Martin R, Hagimoto N, Nakamura M, Matuto-Bello G, Apoptosis and epithelial injury in the lungs. Proc Am Thor Soc 2: 214–220: 2005CrossRefGoogle Scholar
  66. Matthay MA, Folkesson HG, Clerici C, Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 82: 569–600: 2002PubMedGoogle Scholar
  67. Matthay MA, Robriquet L, Fang X, Alveolar epithelium, role in lung fluid balance and acute lung injury. Proc Am Thorac Soc 2: 206–213: 2005PubMedCrossRefGoogle Scholar
  68. Matthay MA, Alveolar fluid clearance in patients with ARDS — Does it make a difference. Chest 122: 340S–343: 2002PubMedCrossRefGoogle Scholar
  69. Matute-Bello G, Martin TR, Science review: apoptosis in acute lung injury. Critical Care 7: 355–358: 2003PubMedCrossRefGoogle Scholar
  70. McLuckie A, Editorial II: High-frequency oscillation in acute respiratory distress syndrome (ARDS). Br J Anaesthesia 93(3): 322–324: 2004CrossRefGoogle Scholar
  71. Medoff BD, Harris RS, Kesselmann H, Venegas J, Amato MBP, Hess D, Use of recruitment maneuvers and high positive end-expiratory pressure in a patient with acute respiratory distress syndrome. Crit Care med 28: 1210–1216: 2000PubMedCrossRefGoogle Scholar
  72. Mehta S, Lapinsky SE, Hallett DC, Merker D, Groll RJ, Cooper AB, MacDonald RJ, Stewart TE, Prospective trial of high-frequency oscillation in adults with acute repiratory distress syndrome. Crit Care Med 29(7): 1360–1369: 2001PubMedCrossRefGoogle Scholar
  73. Morina P, Herrera M, Venegas J, Mora D, Rodriguez M, Pino E, Effects of nebulized salbutamol on respiratory mechanics in adult respiratory distress syndrome. Intensive Care Med 23: 58–64: 1997PubMedCrossRefGoogle Scholar
  74. Murray JF, Matthay MA, Luce JM, Flick MR, An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 138(3): 720–723: April 1989Google Scholar
  75. Neumann P, Berglund JE, Mondejar EF, Magnusson A, Hedenstierna G, Effect of different pressure levels on the dynamics of lung collapse and recruitment in oleic-acid-induced lung injury. Am J Respir Crit Care Med 158: 1636–1643: 1998PubMedGoogle Scholar
  76. Patroniti N, Bellini G, Maggioni E, Mangio A, Martora B, Pesenti A, Measurement of pulmonary edema in patients with acute respiratory distress sindrome. Crit Care Med 33(11) 2547–2554: 2005PubMedCrossRefGoogle Scholar
  77. Pelosi P, Crotti S, Brazzi L, Gattinoni L, Computed tomography in adult respiratory distress syndrome: what has it taught us. Eur Respir J 9: 1055–1062: 1996PubMedCrossRefGoogle Scholar
  78. Perkins GD, McAuley DF, Richter A, Thickett DR, Gao F, Benchto-bedside review: beta2-agonists and the acute respiratory distress syndrome. Crit. Care 8(1): 25–32: 2004PubMedCrossRefGoogle Scholar
  79. Peseti A, Tagliabue P, Patronati N, Fumagalli R, Computerised tomography scan imaging in distress sindrome. Intensive Care Med 27: 631–639: 2001CrossRefGoogle Scholar
  80. Preston IR, Acute and chronic effects of sildenafil in patients with pulmonary arterial hypertension. Respiratory Med (9) Mai 2005Google Scholar
  81. Puneet P, Shabbir M, Madhav B, Chemokines in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 288: L3–L15: 2005PubMedCrossRefGoogle Scholar
  82. Putensen C, Zech S, Wrigge H, Zinserling J, Stüber F, Spiegel T, Mutz N, Long-term effects of spontaneous breathing during ventilatory support in patients with acut lung injury. Am J Rspir Crit Care Med 164(1) 43–49: July 2001Google Scholar
  83. Puybasset L, Cluzel P, Chao N, Slutsky AS, Coriat P, Rouby JJ, A computed Tomography Scan Assessment of Regional Lung Volume in Acute Lung Injury. Am J Respir Crit Care Med 158: 1644–1655: 1998PubMedGoogle Scholar
  84. Quadri AC, Issekutz, Bhattacharya J, High tidal volume ventilation induces proinflammatory signaling in rat lung endothelium. Am J Respiratory Cell and Molecular Biol 28: 218–224: 2003CrossRefGoogle Scholar
  85. Quinlan GJ, Margarson MP, Mumby S et al., Administration of albumin to patients with sepsis syndrome: a possible beneficial role in plasma thiol repletion. Clin Sci 95: 459–465: 1998PubMedCrossRefGoogle Scholar
  86. Quinlan GJ, Mumby S, Martin GS, Bernard GR, Gutteridge JM, Evans TW, Albumin influences total plasma antioxidant capacity favourably in patients with acute lung injury. Crit Care Med 32: 755–759: 2004PubMedCrossRefGoogle Scholar
  87. Ranieri VM, Suter PM, Tortorella C, Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS, Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome — a randomized contolled trial. JAMA 282(1): 54–61: July 1999PubMedCrossRefGoogle Scholar
  88. Rich PB, Awad SS, Crotti S, Hirschl RB, Bartlett RH, Schreiner RJ, A prospective comparison of atrio-femoral and femoro-atrial flow in adult venovenous extracorporeal life support. J Thorac Cardiovasc Surg 116(4): 628–632: October 1998PubMedCrossRefGoogle Scholar
  89. Rossaint R, Pappert D, Gerlach H, Lewandowski K, Keh D, Falke K, Extracorporeal membrane oxygenation for transport of hypoxaemic patients with severe ARDS. Br J Anaesthesia 78: 241–246: 1997Google Scholar
  90. Roth F, Kleinberger G, Lenz K, Ritz R, Schuster HP, Simbrunner G, Slany J, Anfeuchtung der Atemgase. In: Intensivmedizinisches Seminar Band 5 Beatmung. Springer, Wien New York: 1993Google Scholar
  91. Russi EW, Spaetling L, Gmur J, Schneider H, High permeability pulmonary edema (ARDS) during tocolytic therapy — a case report. J Perinat Med 16(1): 45–49: 1988PubMedCrossRefGoogle Scholar
  92. Sakuma T, Folkesson HG, Suzuki S et al., Beta-adrenergic agonist stimulated alveolar fluid clearance in ex vivo human und rat lungs. Am J Respir Crit Care Med 155: 506–512: 1997PubMedGoogle Scholar
  93. Seear MD, Hannam VI, Kaapa P et al., Effect of Pentoxifilylline on hemodynamics, alveolar fluid reabsorbation, and pulmonary edema in a model of acute lung injury. Am Rev Respir Dis 142: 1083–1087: 1990PubMedGoogle Scholar
  94. Sartori C, Matthay MA, Alveolar epithelial fluid transport in acute lung injury: new insights. Eur Respir J 20: 1299–1313: 2002PubMedCrossRefGoogle Scholar
  95. Scherer Peter W, Müller WJ, Raub JB, Haselton FR, Convective mixing in high frequency intermittend jet ventilation. Acta Anaesthesiol Scand 33Supplementum 90: 58–64: 1989CrossRefGoogle Scholar
  96. Schragl E, Donner A, Kashanipour A, Aloy A, Erste Erfahrungen mit der Superponierten Hochfrequenz-Jetventilation in der Intensivmedizin. Anaesthesist 44: 429–435: 1995PubMedCrossRefGoogle Scholar
  97. Schragl E, Donner A, Kashanipour A, Ullrich R, Aloy A, Superponierte Hochfrequenz Jetventilation (SHFJV) unter Verwendung von NO, Technische Grundlagen und erster klinischer Einsatz. Anaesthesist 44: 843–849: 1995PubMedCrossRefGoogle Scholar
  98. Seeger W, Grimminger F et. al, Surfactanttherapie des ARDS, Hintergrund und erste klinische Erfahrungen. Intensivund Notfallbehandlung 22(1): 13–14: 1997Google Scholar
  99. Shimaoku M, Fujino Y, Taenaka N, Hiroi T, Kiyono H, Yoshiya I, High frequency oscillatory ventilation attenuates the activation of alveolar macrophages and neutrophils in lung injury. Critical Care 2: 35–39: 1998CrossRefGoogle Scholar
  100. Simma B, Fritz M, Hammerer I, Conventional ventilation versus high-frequency oscillation: hemodynamic effects in newborn babies. Crit Care Med 28(1): 227–232: 2000PubMedCrossRefGoogle Scholar
  101. Slutsky AS, Drazen JM, Ventilation with small tidal volumes. N Engl J Med 347(9): 630–631: 2002PubMedCrossRefGoogle Scholar
  102. Spragg RG, Lewis JF, Walmrath HD, Johannigman J, Bellingan G, Laterre PF, Witte MC, Richards GA, Rippin G, Rathgeb F, Häfner D, Taut FJH, Seeger W, Effect oof recombinant surfanctant protein c-based surfactant on the acute respiratory distress syndrome. N Engl J Med 351: 884–892: 2004PubMedCrossRefGoogle Scholar
  103. Steinberg KP, Hudson LD, Goodman RB, Hough CL, Lanken PN, Hyzy R, Thompson BT, Ancukiewicz M, National heart, lung, and blood instituete acute respiratory distress syndrome (ARDS) Clinical trials network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 354: 1671–1983: 2006PubMedCrossRefGoogle Scholar
  104. Stiletto R, Gotzen L, Goibeaud S. Kinetische Therapie zur Therapie und Prophylaxe der posttraumatischen Lungeninsuffizienz. Ergebnisse einer prospektiven Studie an 111 Polytraumatisierten. Unfallchirurgg 103: 1057–1064: 2000CrossRefGoogle Scholar
  105. Stoll C, Haller M, Briegel J, Meier M, Manert W, Hummel T, Heyduck M, Lenhart A, Polasek J, Bullinger M, Schelling G, Gesundheitsbezogene Lebensqualität; Langzeitüberleben der erwachsenen Patienten mit ARDS nach extracorporaler Mmbranoxygenation (ECMO). Anaesthesist 47: 24–29: 1998PubMedCrossRefGoogle Scholar
  106. Uhlig S, Mechanotransduction in the lung ventilation-induced lung injury and mechanotransduction: stretching it too far. Am J Physiol Lung Cell Mol Physiol 282: L892–L896: 2002PubMedGoogle Scholar
  107. Velmahos GC, Chan LS, Tatevossian R, Cornwell EE, Dougherty WR, Escudero J, Demetriades D, High-frequency percussive ventilation improves oxygenation in patients with ARDS. Chest 116: 440–446: 1999PubMedCrossRefGoogle Scholar
  108. Verghese GM, Ware LB, Matthay BA, Matthay MA, Alveolar epithelial fluid transport and the resolution of clinically severe hydrostatic pulmonary edema. J Appl Physiol 87(4): 1301–1312: 1999PubMedGoogle Scholar
  109. Vida VL, Rubino M, Stellin G, Prolonged ECMO support for virus-induced cardiorespiratory failure early after cardiac surgery. Pediatr Cardiol 24: December 2005 (Epub ahead of print)Google Scholar
  110. Vieillard-Baron A, Rabiller A, Chergui K, Peyrouset O, Page B, Beauchet A, Jardin F. Prone position improves mechanics and alveolar ventilation in acute respiratory distress syndrome. Intensive Care Med 31: 220–226: 2005PubMedCrossRefGoogle Scholar
  111. Von Kaam AH, Haitsma JJ, Dik WA et al., Response to exogenous surfactant is different during open lung and conventional ventilation. Crit Care Med 32(3): 774–780: 2004PubMedCrossRefGoogle Scholar
  112. Ware LB, Matthay MA, Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 163: 1376–1383: 2001PubMedGoogle Scholar
  113. Ware LB, Matthay MA, The acute respiratory distress Syndrome. The New England J Med: 1334–1349: May 2000Google Scholar
  114. Wang R, Zagariya A, Ang E, Ibarra-Sunga O, Uhal BD, Fas-induced apoptosis epithelial cells requires ANG II generation and receptor interaction. Am J Physiol 277 (Lung Cell Mol Physiol 21): L1245–L1250: 1999PubMedGoogle Scholar
  115. Wilkens H, Pulmonale Hypertonie; Pathophysiologie und aktuelle medikamentöse Therapiekonzepte. Anaesthesist 53: 734–740: 2004PubMedCrossRefGoogle Scholar
  116. Williams R, Rankin N, Smith T, Galler D, Seakins P, Relationship between the humidity and temperature of inspired gas and the function of the airway mucosa. Crit Care Med 24(11): 1920–1929: November 1996PubMedCrossRefGoogle Scholar
  117. Wilson C et al, High-frequency jet ventilation produces auto-PEEP. Crit Care Med 12(9): 734–737: 1984CrossRefGoogle Scholar
  118. Yum HK, Arcaroli J, Kupfner J, Shenkar R, Penninger JM, Sasaki T, Yang KY, Park JS, Abraham E, Involvement of Phosphoinositide 3-kinases in neurtophil activation and the development of acute lung injury. The J Immunol 167: 6601–6608: 2001Google Scholar
  119. Zwischenberger JB, Alpard SK, Conrad SA, Johnigan RH, Bidani A, Arteriovenous carbon dioxide removal: development and impact on ventilator management and survival during severe respiratory failure. Perfusion 14: 299–310: 1999PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2007

Personalised recommendations