The nervous systems of Cnidarians

Part of the Experientia Supplementum book series (EXS, volume 72)


Cnidarians have simple nervous systems and it was probably within this group or a closely-related ancestor that nervous systems first evolved. The basic plan of the cnidarian nervous system is that of a nerve net which, at some locations, has condensed to form nerve plexuses, or circular or longitudinal nerve tracts which may be syncytia. At the ultrastructural level, many cnidarian neurons have the combined characteristics of sensory, motor, inter- and neurosecretory neurons and thus appear to be multifunctional. We propose that these multifunctional neurons resemble the ancestors of the more specialized neurons that we find in higher animals today. The primitive nervous system of cnidarians is strongly peptidergic: from a single sea anemone species Anthopleura elegantissima, we have now isolated 16 different novel neuropeptides. These peptides are biologically active and cause inhibitions or contractions in muscle preparations or isolated muscle cells from sea anemones. The various peptides are located in at least six distinct sets of neurons showing that sea anemone neurons have already specialized with respect to their peptide content. Using immuno-electronmi-croscopy, we have found that the peptides are located in neuronal dense-cored vesicles associated with both synaptic and non-synaptic release sites. All these data indicate that evolutionarily “old” nervous systems use peptides as transmitters. We have also investigated the biosynthesis of the cnidarian neuropeptides. These neuropeptides are made as large precursor proteins which contain multiple (up to 36) copies of immature neuropeptides. Thus, the biosynthesis of neuropeptides in cnidarians is very efficient and comparable to that of higher invertebrates, such as molluscs and insects, and vertebrates.


Mouth Opening Nerve Ring Giant Axon Chemical Synapse Longitudinal Nerve Tract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P.A.V. and Mackie, G.O. (1977) Electrically coupled, photosensitive neurons control swimming in a jellyfish. Science 197: 186–188.PubMedCrossRefGoogle Scholar
  2. Anderson, P.A.V. and Schwab, W.E. (1982) Recent advances and model systems in coelenterate neurobiology. Progr. Neurobiol. 19: 213–236.CrossRefGoogle Scholar
  3. Anderson, P.A.V. (1985) Physiology of a bidirectional, excitatory, chemical synapse. J. Physiol. 53: 821–835.Google Scholar
  4. Anderson, P.A.V. and Grünert, U. (1988) Three-dimensional structure of bidirectional, excitatory synapses in the jellyfish Cyanea capillata. Synapse 2: 606–613.PubMedCrossRefGoogle Scholar
  5. Anderson, P.A.V. and Spencer, A.N. (1989) The importance of cnidarian synapses for neurobiology. J. Neurobiol. 20: 435–457.PubMedCrossRefGoogle Scholar
  6. Anderson, P.A.V., Moosler, A. and Grimmelikhuijzen, C.J.P. (1992) The presence and distribution of Antho-RFamide-like material in scyphomedusae. Cell Tissue Res. 267: 67–74. PubMedCrossRefGoogle Scholar
  7. Barnes, R.D. (1968) Invertebrate Zoology. 2 Edition, W.B. Saunders Company, Philadelphia (p. 83).Google Scholar
  8. Brusca, R.C. and Brusca, G.J. (1990) Invertebrates. Sinauer Associates Inc., Sunderland (p. 245).Google Scholar
  9. Carstensen, K., Rinehart, K.L., McFarlane, I.D., and Grimmelikhuijzen, C.J.P. (1992) Isolation of Leu-Pro-Pro-Gly-Pro-Leu-Pro-Arg-Pro-NH2 (Antho-RPamide), an N-terminally protected, biologically active neuropeptide from sea anemones. Peptides 13: 851–857.PubMedCrossRefGoogle Scholar
  10. Carstensen, K., McFarlane, I.D., Rinehart, K.L., Hudman, D., Sun, F. and Grimmelikhuijzen, C.J.P. (1993) Isolation of <Glu-Asn-Phe-His-Leu-Arg-Pro-NH2 (Antho-RPamide II), a novel, biologically active neuropeptide from sea anemones. Peptides 14: 131–135.PubMedCrossRefGoogle Scholar
  11. Darmer, D., Schmutzler, C., Diekhoff, D. and Grimmelikhuijzen, C.J.P. (1991) Primary structure of the precursor for the sea anemone neuropeptide Antho-RFamide (< Glu-Gly-Arg-Phe-NH2). Proc. Natl. Acad. Sci. USA 88: 2555–2559.PubMedCrossRefGoogle Scholar
  12. Davis, L.E., Burnett, A.L. and Haynes, J.F. (1968) Histological and ultrastructual study of the muscular and nervous system in Hydra. II. Nervous system. J. Exp. Zool. 167: 295–332.PubMedCrossRefGoogle Scholar
  13. Gierer, A., Berking, S., Bode, H., David, C.N., Flick, K., Hansmann, G., Schaller, H. and Trenckner, E. (1972) Regeneration of Hydra from reaggregated cells. Nature New Biol. 239: 98–101.PubMedCrossRefGoogle Scholar
  14. Gierer, A. (1977) Biological features and physical concepts of pattern formation exemplified by Hydra. Curr. Top. Dev. Biol. 11: 17–59.PubMedCrossRefGoogle Scholar
  15. Graff, D. and Grimmelikhuijzen, C.J.P. (1988a) Isolation of < Glu-Ser-Leu-Arg-Trp-NH2, a novel neuropeptide from sea anemones. Brain Res. 442: 354–358.PubMedCrossRefGoogle Scholar
  16. Graff, D. and Grimmelikhuijzen, C.J.P. (1988b) Isolation of < Glu-Gly-Leu-Arg-Trp-NH2 (Antho-RWamide II), a novel neuropeptide from sea anemones. FEBS Lett. 239: 137–140.PubMedCrossRefGoogle Scholar
  17. Grimmelikhuijzen C.J.P., Dockray, G.J. and Schot, L.P.C. (1982) FMRFamide-like immunoreactivity in the nervous system of Hydra. Histochemistry 73: 499–508.PubMedCrossRefGoogle Scholar
  18. Grimmelikhuijzen, C.J.P. (1983a) FMRFamide immunoreactivity is generally occurring in the nervous systems of coelenterates. Histochemistry 78: 361–381.PubMedCrossRefGoogle Scholar
  19. Grimmelikhuijzen, C.J.P. (1983b) Coexistence of neuropeptides in Hydra. Neurosci. 9: 837–845.CrossRefGoogle Scholar
  20. Grimmelikhuijzen C.J.P. and Spencer, A.N. (1984) FMRFamide immunoreactivity in the nervous system of the medusa Polyorchis penicillatus. J. Comp. Neurol. 230: 361–371.PubMedCrossRefGoogle Scholar
  21. Grimmelikhuijzen, C.J.P. (1985) Antisera to the sequence Arg-Phe-amide visualize neuronal centralization in hydroid polyps. Cell Tissue Res. 241: 171–182.CrossRefGoogle Scholar
  22. Grimmelikhuijzen, C.J.P. (1986) FMRFamide-like peptides in the primitive nervous systems of coelenterates and complex nervous systems of higher animals. In: G. Stephano (ed.): Handbook of Comparative Opioid and Related Neuropeptide Mechanisms. CRC Press, Boca Raton, pp. 103–115.Google Scholar
  23. Grimmelikhuijzen C.J.P. and Graff, D. (1986) Isolation of < Glu-Gly-Arg-Phe-NH2 (Antho-RFamide), a neuropeptide from sea anemones. Proc. Natl. Acad. Sci. USA 83: 9817–9821.PubMedCrossRefGoogle Scholar
  24. Grimmelikhuijzen C.J.P., Spencer, A.N. and Carré, D. (1986) Organization of the nervous system of physonectid siphonophores. Cell Tissue Res. 246: 463–479.CrossRefGoogle Scholar
  25. Grimmelikhuijzen C.J.P., Graff, D., Groeger, A. and McFarlane, I.D. (1987) Neuropeptides in invertebrates. In: M. A. Ali (ed.): Nervous Systems in Invertebrates. Plenum Press, New York, pp. 105–132.Google Scholar
  26. Grimmelikhuijzen C.J.P. and Groeger, A. (1987) Isolation of the neuropeptide pGlu-Gly-Arg-Phe-amide from the pennatulid Renilla köllikeri. FEBS Lett. 211: 105–108.CrossRefGoogle Scholar
  27. Grimmelikhuijzen C.J.P., Graff, D. and Spencer, A.N. (1988a) Structure, location and possible actions of Arg-Phe-amide peptides in coelenterates. In: M.C. Thorndyke and G.J. Goldsworthy (eds): Neurohormones in Invertebrates. Cambridge University Press, Cambridge, pp. 199–217.CrossRefGoogle Scholar
  28. Grimmelikhuijzen, C.J.P., Hahn, M., Rinehart, K.L. and Spencer, A.N. (1988b) Isolation of <Glu-Leu-Leu-Gly-Gly-Arg-Phe-NH2 (Pol-RFamide) a novel neuropeptide from hy-dromedusae. Brain Res. 475: 198–203.PubMedCrossRefGoogle Scholar
  29. Grimmelikhuijzen C.J.P., Graff, D. and McFarlane, I.D. (1989a) Neurones and neuropeptides in coelenterates. Arch. Histol. Cytol. 52 (Suppl.): 265–276.PubMedCrossRefGoogle Scholar
  30. Grimmelikhuijzen C.J.P., Graff, D., Koizumi, O., Westfall, J.A. and McFarlane, I.D. (1989b) Neurones and their peptide transmitters in coelenterates. In: P.A.V. Anderson (ed.): Evolution of the First Nervous Systems. Plenum Press, New York, pp. 95–109.Google Scholar
  31. Grimmelikhuijzen, C.J.P., Rinehart, K.L., Jacob, E., Graff, D., Reinscheid, R.K., Nothacker, H.-P. and Staley, A.L. (1990) Isolation of L-3-phenyllactyl-Leu-Arg-Asn-NH2 (Antho-RNamide), a sea anemone neuropeptide containing an unusual amino-terminal blocking group. Proc. Natl. Acad. Sci. USA 87: 5410–5414.PubMedCrossRefGoogle Scholar
  32. Grimmelikhuijzen, C.J.P., Carstensen, K., Darmer, D., Moosler, A., Nothacker, H.-P., Reinscheid, R.K., Schmutzler, C., Vollert, H., McFarlane, I.D. and Rinehart, K.L. (1992a) Coelenterate neuropeptides: structure, action and biosynthesis. Amer. Zool. 32: 1–12.Google Scholar
  33. Grimmelikhuijzen, C.J.P., Rinehart, K.L. and Spencer, A.M. (1992b) Isolation of the neuropeptide < Glu-Trp-Leu-Lys-Gly-Arg-Phe-NH2 (Pol-RFamide II) from the hydromedusa Polyorchis penicillatus. Biochem. Biophys. Res. Commun. 183: 375–382.PubMedCrossRefGoogle Scholar
  34. Grimmelikhuijzen, C.J.P., Darmer, D., Schmutzler, C., Reinscheid, R.K. and Carstensen, K. (1994). Biosynthesis of neuropeptides in the Cnidaria: new discoveries of old principles. In: K.G. Davey, R.E. Peter and S.S. Tobe (eds): Perspectives in Comparative Endocrinology. National Research Council Canada, Ottawa, pp. 97–108.Google Scholar
  35. Hadži, J. (1909) Über das Nervensystem von Hydra. Arb. Zool. Inst. Wien 17: 225–268.Google Scholar
  36. Horridge, G.A. (1954) Observations on the nerve fibres of Amelia aurita. Quart. J. Micr. Sci. 95: 85–92.Google Scholar
  37. Horridge, G.A. (1956) The nervous system of the ephyra larva of Amelia aurita. Quart. J. Micr. Sci. 97: 59–74.Google Scholar
  38. Horridge, G.A. and Mackay, B. (1962) Naked axons and symmetrical synapses in coelenterates. Quart. J. Micr. Sci. 103: 531–541.Google Scholar
  39. Jha, R.K. and Mackie, G.O. (1967) The recognition, distribution and ultrastructure of hydrozoan nerve elements. J. Morphol. 123: 43–62.PubMedCrossRefGoogle Scholar
  40. Josephson, R.K., Reiss, R.F. and Worthy, R.M. (1961) A simulation study of a diffuse conducting system based on coelenterate nerve nets. J. Theor. Biol. 1: 460–487.PubMedGoogle Scholar
  41. Kinamon, J.C. and Westfall, J.A. (1981) A three-dimensional serial reconstruction of neuronal distributions in the hypostome of a Hydra. J. Morphol. 168: 321–329.CrossRefGoogle Scholar
  42. Koizumi, O., Wilson, J.D., Grimmelikhuijzen, C.J.P. and Westfall, J.A. (1989) Ultrastructural localization of RFamide-like peptides in neuronal dense-cored vesicles in the peduncle of Hydra. J. Exp. Zool. 249: 17–22.PubMedCrossRefGoogle Scholar
  43. Koizumi, O. and Bode, H.R. (1991) Plasticity in the nervous system of adult Hydra III. Conversion of neurons to expression of a vasopressin-like immunoreactivity depends on axial location. J. Neuroscience 11: 2011–2020.Google Scholar
  44. Koizumi, O., Itazawa, M., Mizumoto, H., Minobe, S., Javois, L.C., Grimmelikhuijzen, C.J.P. and Bode, H.R. (1992) Nerve ring of the hypostome in Hydra. I. Its structure, development, and maintenance. J. Comp. Neurol. 326: 7–21.PubMedCrossRefGoogle Scholar
  45. Kroiher, M. and Plickert, G. (1992) Analysis of pattern formation during embryonic development of Hydractinia echinata. Roux’s Arch. Dev. Biol. 201: 95–104.CrossRefGoogle Scholar
  46. Mackie, G.O. (1973) Report on giant nerve fibres in Nanomia. Publ. Seto Marine Lab. 20: 745–756.Google Scholar
  47. Mackie, G.O. (1984) Fast pathways and escape behavior in Cnidaria. In: R.C. Eaton (ed.): Neural Mechanisms of startle behavior, Plenum Press, New York, pp. 15–42.Google Scholar
  48. Mackie, G.O., Singla, C.L. and Stell, W.K. (1985) Distribution of nerve elements showing FMRFamide-like immunoreactivity in hydromedusae. Acta Zool. 66: 199–210.CrossRefGoogle Scholar
  49. Mackie, G.O., Singla, C.L. and Arkett, S.A. (1988) On the nervous system of Vellela (Hydrozoa: Chondrophora). J. Morphol. 198: 15–23.CrossRefGoogle Scholar
  50. Mackie, G.O. (1989) Evolution of cnidarian giant axons. In: P.A.V. Anderson (ed.): Evolution of the First Nervous Systems. Plenum Press, New York, pp. 395–407.Google Scholar
  51. Mackie, G.O. (1990) The elementary nervous system revisited. Amer. Zool. 30: 907–920.Google Scholar
  52. Martin, V.J. (1992) Characterization of an RFamide-positive subset of ganglionic cells in the hydrozoan planular nerve net. Cell Tissue Res. 269: 431–438.PubMedCrossRefGoogle Scholar
  53. Marshall, A.J. and Williams, W.D. (1972) Textbook of Zoology. Invertebrates, 7 Edition, The MacMillan Press, London (p. 12).Google Scholar
  54. Matsuno, T. and Kageyama, T. (1984) The nervous system in the hypostome of Pelmatohydra robusta: the presence of a circumhypostomal nerve ring in the epidermis. J. Morphol. 182: 153–168.CrossRefGoogle Scholar
  55. McFarlane, I.D. (1973) Spontaneous contractions and nerve-net activity in the sea anemone Calliactis parasitica. Mar. Behaviour Physiol. 2: 97–113.CrossRefGoogle Scholar
  56. McFarlane, I.D., Graff, D. and Grimmelikhuijzen, C.J.P. (1987) Exitatory actions of Antho-RFamide, an anthozoan neuropeptide, on muscles and conducting systems in the sea anemone Calliactis parasitica. J. Exp. Biol. 133: 157–168.Google Scholar
  57. McFarlane, I.D., Anderson, P.A.V. and Grimmelikhuijzen, C.J.P. (1991) Effects of three anthozoan neuropeptides, Antho-RWamide I, Antho-RWamide II and Antho-RFamide, on slow muscles from sea anemones. J. Exp. Biol. 156: 419–431.PubMedGoogle Scholar
  58. McFarlane, I.D. and Grimmelikhuijzen, C.J.P. (1991) Three anthozoan neuropeptides, Antho-RFamide and Antho-RWamides I and II, modulate spontaneous tentacle contractions in sea anemones. J. Exp. Biol. 155: 669–673.Google Scholar
  59. McFarlane, I.D., Reinscheid, R.K. and Grimmelikhuijzen, C.J.P. (1992) Opposite actions of the anthozoan neuropeptide Antho-RNamide on antagonistic muscle groups in sea anemones. J. Exp. Biol. 164: 295–299.Google Scholar
  60. McFarlane, I.D., Hudman, D., Nothacker, H.-P. and Grimmelikhuijzen, C.J.P. (1993). The expansion behaviour of sea anemones may be coordinated by two inhibitory neuropeptides, Antho-KAamide and Antho-RIamide. Proc. Roy. Soc. B. (London) 253: 183–188.CrossRefGoogle Scholar
  61. Nothacker, H.-P., Rinehart, K.L. and Grimmelikhuijzen, C.J.P. (1991a) Isolation of L-3-phenyllactyl-Phe-Lys-Ala-NH2 (Antho-KAamide), a novel neuropeptide from sea anemones. Biochem. Biophys. Res. Commun. 179: 1205–1211.PubMedCrossRefGoogle Scholar
  62. Nothacker, H.-P., Rinehart, K.L., McFarlane, I.D. and Grimmelikhuijzen, C.J.P. (1991b) Isolation of two novel neuropeptides from sea anemones: the unusual, biologically active L-3-phenyllactyl-Tyr-Arg-Ile-NH2 and its des-phenyllactyl fragment Tyr-Arg-Ile-NH2. Peptides 12: 1165–1173.PubMedCrossRefGoogle Scholar
  63. Plickert, G. (1989) Proportion-altering factor (PAF) stimulates nerve cell formation in Hydractinia echinata. Cell Diff. Develop. 26: 19–28.CrossRefGoogle Scholar
  64. Price, D.A. and Greenberg, M. (1977) Structure of a molluscan neuropeptide. Science 197: 670–671.PubMedCrossRefGoogle Scholar
  65. Quaglia, A. and Grasso, M. (1986) Ultrastructural evidence for a peptidergic-like neurosecretory cell in a sea anemone. Oebalia 13: 147–156.Google Scholar
  66. Reinscheid, R.K. and Grimmelikhuijzen, C.J.P. (1994) Primary structure of the precursor for the anthozoan neuropeptide Antho-RFamide from Renilla kollikeri: evidence for unusual processing enzymes. J. Neurochem. 62: 1214–1222.PubMedCrossRefGoogle Scholar
  67. Satterlie, R.A. (1979) Central control of swimming in the cubomedusan jellyfish Charibdea rastonii. J. Comp. Physiol. 133: 357–367.CrossRefGoogle Scholar
  68. Schmutzler, C., Darmer, D., Diekhoff, D. and Grimmelikhuijzen, C.J.P. (1992) Identification of a novel type of processing sites in the precursor for the sea anemone neuropeptide Antho-RFamide (<Glu-Gly-Arg-Phe-NH2) from Anthopleura elegantissima. J. Biol. Chem. 267: 22534–22541.PubMedGoogle Scholar
  69. Schmutzler, C., Diekhoff, D. and Grimmelikhuijzen, C.J.P. (1994) The primary structure of the Pol-RFamide neuropeptide precursor protein from the hydromedusa Polyorchis penicillatus indicates a novel processing proteinase activity. Biochem. J. 299: 431–436.PubMedGoogle Scholar
  70. Schneider, K.C. (1890) Histologie von Hydra fusca mit besonderer Berücksichtigung des Nervensystems der Hydropolypen. Arch. mikrosk. Anat. 35: 321–379.CrossRefGoogle Scholar
  71. Spencer, A.N. (1978) Neurobiology of Polyorchis. I. Function of effector systems. J. Neuro-biol. 9: 143–157.Google Scholar
  72. Spencer, A.N. (1979) Neurobiology of Polyorchis. II. Structure of effector systems. J. Neurobiol. 10: 95–117.PubMedCrossRefGoogle Scholar
  73. Spencer, A.N. and Satterlie, R.A. (1980) Electrical and dye coupling in an identified group of neurons in a coelenterate. J. Neurobiol. 11: 13–19.PubMedCrossRefGoogle Scholar
  74. Spencer, A.N. (1982) The physiology of a coelenterate neuromuscular synapse. J. Comp. Physiol. 148: 353–363.CrossRefGoogle Scholar
  75. Spencer, A.N. and Arkett, S.A. (1984) Radial symmetry and the organization of central neurones in a hydrozoan jellyfish. J. Exp. Biol. 110: 69–90.Google Scholar
  76. Weber, C. (1989) Smooth muscle fibers of Podocoryne carnea (Hydrozoa) demonstrated by a specific monoclonal antibody and their association with neurons showing FMRFamide-like immunoreactivity. Cell Tissue Res. 255: 275–282.CrossRefGoogle Scholar
  77. Westfall, J.A. (1973a) Ultrastructural evidence for a granule-containing sensory-motor interneuron in Hydra littoralis. J. Ultrastruct. Res. 42: 268–282.PubMedCrossRefGoogle Scholar
  78. Westfall, J.A. (1973b) Ultrastructual evidence for neuromuscular systems in coelenterates. Amer. Zool. 13: 237–246.Google Scholar
  79. Westfall, J.A. and Kinnamon, J.C. (1978) A second sensory-motor-interneuron with neurosecretory granules in Hydra. J. Neurocytol. 7: 365–379.PubMedCrossRefGoogle Scholar
  80. Westfall, J.A. and Kinnamon, J.C. and Sims, D.E. (1980) Neuro-epitheliomuscular cell and neuro-neuronal gap junctions in Hydra. J. Neurocytol. 9: 725–732.PubMedCrossRefGoogle Scholar
  81. Westfall, J.A. and Kinnamon, J.C. (1984) Perioral synaptic connections and their possible role in the feeding behavior of Hydra. Tiss. Cell 16: 355–365.CrossRefGoogle Scholar
  82. Westfall, J.A. (1987) Ultrastructure of invertebrate synapses. In: M.A. Ali (ed.): Nervous systems in invertebrates. Plenum Press, New York, pp. 3–28.Google Scholar
  83. Westfall, J.A. and Grimmelikhuijzen, C.J.P. (1993) Antho-RFamide immunoreactivity in neuronal synaptic and nonsynaptic vesicles of sea anemones. Biol. Bull. 185: 109–114.CrossRefGoogle Scholar
  84. Yasuda, A., Naya, Y. and Nakanishi, K. (1993) Isolation of Antho-RFamide related peptides from the eye stalks of blue crab. Comp. Biochem. Physiol. 104 B: 235–240.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1995

Authors and Affiliations

  1. 1.Department of Cell Biology and AnatomyUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.Centre for Molecular NeurobiologyUniversity of HamburgHamburgGermany
  3. 3.Department of Anatomy and PhysiologyKansas State UniversityManhattanUSA

Personalised recommendations