Advertisement

Floer’s infinite dimensional Morse theory and homotopy theory

  • R. L. Cohen
  • J. D. S. Jones
  • G. B. Segal
Part of the Progress in Mathematics book series (PM, volume 133)

Abstract

This paper is a progress report on our efforts to understand the homotopy theory underlying Floer homology. Its objectives are as follows:
  1. (A)

    to describe some of our ideas concerning what exactly the Floer homology groups compute;

     
  2. (B)

    to explain what kind of an object we think the «Floer homotopy type» of an infinite dimensional manifold should be;

     
  3. (C)

    to work out, in detail, the Floer homotopy type in some examples.

     

Keywords

Vector Bundle Homotopy Type Homotopy Theory Stable Category Floer Homology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.F. Adams, Stable homotopy and generalised homology, Chicago Lecture Notes in Mathematics, The University of Chicago Press, Chicago and London, 1974.zbMATHGoogle Scholar
  2. [2]
    J.F. Adams, Operations of the nth kind in K-theory, and what we don’t know about ℝℙ , New developments in topology, LMS Lecture Note Series 11, Cambridge University Press, Cambridge, 1974.Google Scholar
  3. [3]
    J.F. Adams, Graeme Segal’s Burnside ring conjecture, Bulletin of the AMS (New Series) 6, 201–210.Google Scholar
  4. [4]
    M.F. Atiyah, New invariants of 3- and 4-dimensional manifolds, The Mathematical Heritage of Hermann Weyl, Proceedings of Symposia in Pure Mathematics 48, AMS, Providence, Rhode Island, 1988, 285–299.Google Scholar
  5. [5]
    M.F. Atiyah and J.D.S. Jones, Topological aspects of Yang-Mills theory, Communications in Mathematical Physics 61, 1978, 97–118.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    D.M. Austin and P.J. Braam, Morse-Bott theory and equivariant cohomology, this volume.Google Scholar
  7. [7]
    C.P. Boyer, J.C. Hurtubise, B.M. Mann, and R.J. Milgram, The topology of instanton moduli spaces I: The Atiyah-J ones conjecture, preprint, 1992.Google Scholar
  8. [8]
    G. Carlsson, Segal’s Burnside ring conjecture and the homotopy limit problem, Homotopy Theory (Durham 1985), LMS Lecture Note Series 117, 1987, 6–34.Google Scholar
  9. [9]
    R.L. Cohen, J.D.S. Jones, and G.B. Segal, Morse theory and classifying spaces, preprint, 1992.Google Scholar
  10. [10]
    S.K. Donaldson and P.B. Kronheimer, The Geometry of Four-Manifolds, Oxford Mathematical Monographs, Oxford University Press, Clarendon Press, Oxford, 1990.zbMATHGoogle Scholar
  11. [11]
    B. Feigen and E. Frenkel, Affine Kac-Moody algebras and semi-infinite flag manifolds, Communications in Mathematical Physics 128, 1990, 161–189.MathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Floer, Morse theory for Lagrangian intersections, Journal of Differential Geometry 28, 1988, 513–547.MathSciNetzbMATHGoogle Scholar
  13. [13]
    A. Floer, An instanton invariant for 3-manifolds, Communications in Mathematical Physics 118, 1988, 215–240.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    J.M. Franks, Morse-Smale flows and homotopy theory, Topology 18, 1979, 119–215.MathSciNetCrossRefGoogle Scholar
  15. [15]
    J. Gravesen, On the topology of spaces of holomorphic maps, Acta Mathematica 162, 1989, 249–286.MathSciNetCrossRefGoogle Scholar
  16. [16]
    M.A. Guest, Topology of the space of absolute minima of the energy functional, American Journal of Mathematics 106, 1984, 21–42.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    F. Kirwan, On spaces of maps from Riemann surfaces to Grassmannians and the cohomology of moduli spaces of vector bundles, Arkiv Math. 122, 1985, 221–275.CrossRefGoogle Scholar
  18. [18]
    F. Kirwan, Geometric invariant theory and the Atiyah-Jones conjecture, preprint, Oxford 1992 (to appear).Google Scholar
  19. [19]
    L.G. Lewis, J.P. May, and M. Steinberger (with contributions by J.E. Mc-Clure), Equivariant stable homotopy theory, Springer Lecture Notes in Mathematics 1213, Springer-Verlag, Berlin, Heidelberg, New York, 1986.zbMATHGoogle Scholar
  20. [20]
    W.H. Lin, D.M. Davis, M.E. Mahowald, J.F. Adams, Calculation of Lin’s Ext groups, Math. Proc. Camb. Phil. Soc. 87, 1980, 459–469.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    M.E. Mahowald, The metastable homotopy of S n Memoirs Amer. Math. Soc. 72, AMS, Providence, Rhode Island, 1967.Google Scholar
  22. [22]
    A.N. Pressley and G.B. Segal, Loop groups, Oxford Mathematical Monographs, Oxford University Press, Clarendon Press, Oxford, 1986.zbMATHGoogle Scholar
  23. [23]
    G.B. Segal Classifying spaces and spectral sequences, Publications I.H.E.S 34, 1968, 105–112.zbMATHGoogle Scholar
  24. [24]
    G.B. Segal, The topology of spaces of rational functions, Acta Mathematica 143, 1979, 39–72.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    G.B. Segal, Elliptic Cohomology (after Landweber-Stong, Ochanine, Witten and others), Séminaire Bourbaki 1987–1988, Astérisque 161–162, 1988, 191–202.Google Scholar
  26. [26]
    S. Smale, On gradient dynamical systems, Annals of Mathematics 74, 1961, 199–206.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    C.H. Taubes, The stable topology of self-dual moduli spaces, Journal of Differential Geometry 29, 1989, 163–230.MathSciNetzbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • R. L. Cohen
    • 1
  • J. D. S. Jones
    • 3
  • G. B. Segal
    • 2
  1. 1.Mathematics DepartmentStanford UniversityCaliforniaUSA
  2. 2.DPMMSCambridge UniversityCambridgeEngland
  3. 3.Mathematics InstituteWarwick UniversityCoventryEngland

Personalised recommendations