Control of Discrete Event Systems by Means of the Boolean Differential Calculus

  • Rainer Scheuring
  • Hans Wehlan
Part of the Progress in Systems and Control Theory book series (PSCT, volume 13)


A new approach to the study of discrete event systems (DES), characterized by automata, Petri-Nets or related presentations, is proposed. The Boolean Differential Calculus (BDC) supports modeling, analysis and synthesis of DES. This paper not only demonstrates fundamental properties of the BDC, but also presents a synthesis algorithm for the cat-mouse-example.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. C. Ho. Dynamics of discrete event systems. Proceedings of the IEEE, 77 (1): 3–6, January 1989.CrossRefGoogle Scholar
  2. [2]
    R. Scheuring and H. Wehlan. Der Boolesche Differentialkalkül- Eine Methode zur Analyse and Synthese von Petri-Netzen. at - Automatisierungstechnik, 39: 226–233, July 1991.Google Scholar
  3. [3]
    T. L. Booth. Sequential Machines and Automata Theory. John Wiley, New York, 1967.zbMATHGoogle Scholar
  4. [4]
    P. E. Caines, R. Greiner, and S. Wang. Dynamical Logic Observers for Finite Automata. In Proceedings of the 27th IEEE Conference on Decision and Control, pages 226–233, Austin, Texas, December 1988.CrossRefGoogle Scholar
  5. [5]
    P. E. Caines and S. Wang. Classical and Logic based Regulator Design and its Complexity for Partially Observed Automata. In Proceedings of the 28th IEEE Conference on Decision and Control, pages 132–137, Tampa, Florida, December 1989.CrossRefGoogle Scholar
  6. [6]
    L.E. Holloway and B.H. Krogh. Synthesis of feedback control logic for a class of controlled Petri nets. IEEE Transactions on Automatic Control, 35 (5): 514–523, May 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event systems. Siam J. Control and Optimization, 25 (1): 206–230, Jan. 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Randy Cieslak, C. Desclaux, Ayman S. Fawaz, and Pravin Varaiya. Supervisory control of discrete-event processes with partial observations. IEEE Transactions on Automatic Control, 33 (3): 249–260, March 1988.zbMATHCrossRefGoogle Scholar
  9. [9]
    R.D. Brandt, V. Garg, P. Kumar, F. Lin, S.I. Marcus, and W.M. Wonham. Formulas for Calculating Supremal Controllable and Normal Sublanguages. Systems & Control Letters, 15: 111–117, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    C.H. Golaszewski and P.J. Ramadge. Boolean coordination problems for product discrete event systems. In Proceedings of the 29th IEEE Conference on Decision and Control, pages 3428–3433, Honolulu, Hawaii, December 1990.CrossRefGoogle Scholar
  11. [11]
    Y. Brave and M. Heymann. Stabilization of discrete-event processes. Int. J. Control, 51 (5): 1101–1117, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    S. Balemi. Control of Discrete Event Systems: Theory and Application. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, May, 1992.Google Scholar
  13. [13]
    S. B. Akers. On a theory of Boolean functions. SIAM J., 7: 487–498, 1959.zbMATHGoogle Scholar
  14. [14]
    A. Talantsev. On the analysis and synthesis of certain electrical circuits by, means of special logical operators. Automat. i telemeh., 20: 898–907, 1959.Google Scholar
  15. [15]
    D. Bochmann and C. Posthoff. Binäre dynamische Systeme. R. Oldenbourg Verlag, München, Wien, 1981.zbMATHGoogle Scholar
  16. [16]
    A. Thayse. Boolean Calculus of Differences, volume 101 of Lecture Notes in Computer Science. Springer Verlag, Berlin, New-York, 1981.Google Scholar
  17. [17]
    D. Bochmann and B. Steinbach. Logikentwurf mit XBOOLE. Verlag Technik, Berlin, 1991.Google Scholar
  18. [18]
    R. Scheuring, B. Steinbach, and D. Bochmann. XBMini - User’s Guide. Institut für Systemdynamik und Regelungstechnik, Stuttgart University, Internal report, 1992.Google Scholar
  19. [19]
    R. Scheuring. Modellierung, Beobachtung und Steuerung ereignisorientierter verfahrenstechnischer Systeme. PhD thesis, Institut für Systemdynamik und Regelungstechnik, Stuttgart University, In preparation, 1993.Google Scholar
  20. [20]
    P.J. Ramadge and W.M. Wonham. On the supremal controllable sublanguage of a given language. SIAM J. Control and Optimization, 25 (3): 637–659, May 1987.MathSciNetCrossRefGoogle Scholar
  21. [21]
    R. Scheuring and H. Wehlan. On the design of discrete event dynamic systems by means of the boolean differential calculus. In First IFAC Symposium on Design Methods of Control Systems, pages 723–728, Zurich, September 1991.Google Scholar
  22. [22]
    W.V. Quine. A way to simplify truth functions. American Mathematical Monthly, 62 (9): 627–631, November 1955.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    E.J. McCluskey Jr Minimization of boolean functions. Bell System Technical Journal, 35 (6): 1417–1444, November 1956.MathSciNetGoogle Scholar
  24. [24]
    P. Kozak, S. Balemi, and R. Smedinga, editors. Preprints of the Joint Workshop on Discrete Event Systems, Prague, August 1992.Google Scholar
  25. [25]
    J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.Google Scholar
  26. [26]
    B. Steinbach. Theorie, Algorithmen und Programme für den rechnergestützten logischen Entwurf digitaler Systeme. Dissertation B. Technische Universität Karl-Marx-Stadt, 1984.Google Scholar
  27. [27]
    B. Steinbach and N. Kuemmling. Effiziente Lösung hochdimensionaler BOOLEscher Probleme mittels XBOOLE auf Transputer. In Grebe R. and C. Ziemann, editors, Parallele Datenverarbeitung mit dem Transputer. Proceedings X (Springerreihe Informatikberichte Band 272), pages 127–434. Springer-Verlag, Berlin, New York, 1991.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1993

Authors and Affiliations

  • Rainer Scheuring
  • Hans Wehlan
    • 1
  1. 1.Institut für Systemdynamik und RegelungstechnikUniversität StuttgartStuttgart 80Germany

Personalised recommendations