Protein disulfide isomerase: A multifunctional protein of the endoplasmic reticulum

  • J. M. Luz
  • W. J. Lennarz
Part of the EXS book series (EXS, volume 77)

Summary

Protein disulfide isomerase (PDI) is a resident enzyme of the endoplasmic reticulum (ER) that was discovered over three decades ago. Contemporary biochemical and molecular biology techniques have revealed that it is present in all eukaryotic cells studied and retained in the ER via a -KDEL or -HDEL sequence at its C-terminus. However, evidence is accumulating that, in certain cell types, PDI can be found in other subcellular compartments, despite possessing an intact retention sequence. A wide range of studies has established that in presence of a redox pair, PDI acts catalytically to both form and reduce disulfide bonds, therefore acting as a disulfide isomerase. Recent studies have focused on the mechanism of the isomerization process and the precise role of the two active site sequences (-CGHC-) in the process. In addition, prokaryotes have been shown to possess a set of proteins that function in a similar fashion, being able to generate disulfide bonds on polypeptides translocated into the periplasmic space. Following the recent discovery that PDI binds peptides, coupled with earlier findings that PDI is a subunit of at least two enzymatic complexes (prolyl 4-hydroxylase and microsomal triglyceride transfer protein), it seems that it may serve functions other than merely that of a disulfide isomerase. In fact, it is now clear that PDI can facilitate protein folding independently of its disulfide isomerase activity. A major challenge for the future is to define mechanistically how it accomplishes isomerization and the relationship between this process and the protein folding steps that culminate in the final, fully mature protein.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, M. and Church, R.L. (1991) Amino acid sequence analysis of proteins in the human corneal stromal membrane. Curr. Eye Res. 10: 35–46.PubMedCrossRefGoogle Scholar
  2. Akiyama, Y., Kamitani, S., Kusukawa, N. and Iko, K. (1992) In vitro catalysis of oxidative folding of disulfide bonded protein by the Escherichia coli DsbA (ppfA) gene product. J. Biol Chem. 267: 22440–22445.PubMedGoogle Scholar
  3. Bardwell, J.C.A., McGovern, K. and Beckwith, J. (1991) Identification of a protein required for disulfide bond formation in vivo. Cell 67: 581–589.Google Scholar
  4. Bardwell, J.C.A., Lee, J.-O., Jander, G., Martin, N., Belin, D. and Beckwith, J. (1993) A pathway for disulfide bond formation in vivo. Proc. Natl. Acad. Sci. USA 90: 1038–1042.CrossRefGoogle Scholar
  5. Bardwell, J.C.A. (1994) Building bridges: disulfide bond formation in the cell. Mol. Microbiol. 14: 199–205.PubMedCrossRefGoogle Scholar
  6. Beckman, D.L. and Kranz, R.G. (1993) Cytochrome c biogenesis in a photosynthetic bacterium requires a periplasmic thioredoxin-like protein. Proc. Natl. Acad. Sci. USA 90: 2179–2183.PubMedCrossRefGoogle Scholar
  7. Bennett, C.F., Balcarek, J.M., Varrichio, A. and Crooke, S.T. (1988) Molecular cloning and complete sequence of form-I phosphoinositide-specific phospholipase C. Nature 334: 268–270.PubMedCrossRefGoogle Scholar
  8. Berg, R.A., Kao, W.W.-Y. and Kedersha, N.L. (1980) The assembly of tetrameric prolyl hydroxylase in tendon fibroblasts form newly synthesized α-subunits and from preformed cross-reacting protein. Biochem. J. 189: 491–499.PubMedGoogle Scholar
  9. Boniface, J.J. and Reichert, L.E., Jr. (1990) Evidence for a novel thioredoxin-like catalytic property of gonadotropic hormones. Science 247: 61–64.PubMedCrossRefGoogle Scholar
  10. Brandes, H.K., Larimer, F.W., Geek, M.K., Stringer, C.D., Schurmann, P. and Hartman, F.C. (1993) Direct identification of the primary nucleophile of thioredoxin f. J. Biol. Chem. 268: 18411–18414.Google Scholar
  11. Cai, H., Wang, C.-C. andTsou, C.-L. (1994) Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds. J. Biol Chem. 269: 24550–24552.PubMedGoogle Scholar
  12. Carmichael, D.F., Morin, J.E. and Dixon, J.E. (1977) Purification and characterization of a thiol-protein disulfide oxireductase from bovine liver. J. Biol. Chem. 252: 7163–7167.PubMedGoogle Scholar
  13. Chen, W., Helenius, J., Braakman, I. and Helenius, A. (1995) Co-translational folding and calnexin binding during glycoprotein synthesis. Proc. Natl. Acad. Sci. USA 92: 6229–6233.PubMedCrossRefGoogle Scholar
  14. Chen-Kiang, S., Cardinale, G.J. and Udenfriend, S. (1977) Homology between a prolyl hydroxylase subunit and a tissue protein that cross-reacts immunologically with the enzyme. Proc. Natl. Acad. Sci. USA 74: 4420–4424.PubMedCrossRefGoogle Scholar
  15. Cheng, S., Gong, Q., Parkinson, C., Robinson, E.A., Appella, E., Merlino, G.T. and Pastan, I. (1987) The nucleotide sequence of a human cellular thyroid hormone binding protein present in the endoplasmic reticulum. J. Biol. Chem. 262: 11221–11227.PubMedGoogle Scholar
  16. Crooke, H. and Cole, J. (1995) The biogenesis of c-type cytochromes in Escherichia coli requires a membrane bound protein, DipZ, with a protein disulfide isomerase-like domain. Mol. Microbiol. 15: 1139–1150.PubMedCrossRefGoogle Scholar
  17. Dailey, F.E. and Berg, H.C. (1993) Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. Proc. Natl. Acad. Sci. USA 90: 1043–1047.CrossRefGoogle Scholar
  18. Darby, N.J. and Creighton, T.E. (1995) Catalytic mechanism of DsbA and its comparison with that of protein disulfide isomerase. Biochemistry 34: 3576–3587.PubMedCrossRefGoogle Scholar
  19. Dorner, A.J., Wasley, L.C., Raney, P., Haugejorden, S., Green, M. and Kaufman, R.J. (1990) The stress response in Chinese hamster ovary cells. J. Biol. Chem. 265: 22029–22034.PubMedGoogle Scholar
  20. Edman, J.E., Ellis, L., Blacker, R.W., Roth, R.A. and Ruthe, W.J. (1985) Sequence of protein disulfide isomerase and implications of its relationship to thioredoxin. Nature 317: 267–270.PubMedCrossRefGoogle Scholar
  21. Epstein, C.J., Goldberger, R.F. and Anfinsen, C.F. (1963) The genetic control of tertiary protein structure: studies with model systems. Cold Spring Harbor Symp. Quant. Biol. 28: 439–449.Google Scholar
  22. Farquhar, R., Honey, N., Murant, S.J., Bossier, P., Schultz, L., Montgomery, D., Ellis, R.W., Freedman, R.B. and Tuite, M.F. (1991) PDI is essential for viability in Saccharomyces cerevisiae. Gene 108: 81–89.Google Scholar
  23. Fliegel, L., Newton, E., Burns, K. and Michalak, M. (1990) Molecular cloning of a cDNA encoding a 55 kDa multifunctional thyroid hormone binding protein of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 265: 15496–15502.PubMedGoogle Scholar
  24. Freedman, R.B., Hirst, T.R. and Tuite, M.F. (1994) Protein disulfide isomerase: building bridges in protein folding. Trends Biol. Sci. 19: 331–336.CrossRefGoogle Scholar
  25. Freedman, R.B. (1989) Protein disulfide isomerase: multiple roles in the modification of nascent secretory proteins. Cell 57: 1069–1072.PubMedCrossRefGoogle Scholar
  26. Freedman, R.B., Bulleid, N.J., Hawkins, H. and Paver, J.L. (1989) Role of protein disulfide-isomerase in the expression of native proteins. Biochemical Society Symposia 55: 167–192.Google Scholar
  27. Freedman, R.B. (1991) Protein disulfide isomerase— an enzyme that catalyses protein folding in the test tube and in the cell. In: E.T. Nail and K.A. Dill (eds): Conformations and Forces in Protein Folding. A A AS, vol. 16, pp 204–216.Google Scholar
  28. Freedman, R.B. (1994) Folding helpers and unhelpful folders. Curr. Biol 4: 933–935.PubMedCrossRefGoogle Scholar
  29. Goldberger, R.F., Epstein, C.J. and Anfinsen, C.B. (1964) Purification and properties of a microsomal enzyme system catalyzing the reactivation of reduced ribonuclease and lysozyme. J. Biol Chem. 239: 1406–1410.PubMedGoogle Scholar
  30. Gunther, R., Brauer, C., Janetzky, B., Forster, H.-H., Elbrech, I.-M., Lehle, L. and Kuntzel, H. (1991) The Saccharomyces cerevisiae TRG1 gene is essential for growth and encodes a lumenal endoplasmic reticulum glycoprotein involved in the maturation of vacuolar carboxypeptidase. J. Biol Chem. 266: 24557–24563.PubMedGoogle Scholar
  31. Gunther, R., Srinivasan, M., Haugejorden, S., Green, M., Ehbrecht, I.-M. and Kuntzel, H. (1993) Functional replacement of the Saccharomyces cerevisiae Trgl/Pdil protein by members of the mammalian protein disulfide isomerase family. J. Biol Chem. 268: 7728–7732.PubMedGoogle Scholar
  32. Hasumura, S., Kitagawa, S., Lovelace, E., Willingham, M.C., Pastan, I. and Cheng, S. (1986) Characterization of a membrane-associated 3,3′,5-triiodo-L-tyronine binding protein by use of monoclonal antibodies. Biochemistry 25: 7881–7888.PubMedCrossRefGoogle Scholar
  33. Haugejorden, S., Srinivasan, M. and Green, M. (1991) Analysis of retention signals of two resident endoplasmic reticulum proteins by in vitro mutagenesis. J. Biol Chem. 266: 6015–6018.PubMedGoogle Scholar
  34. Hawkins, H.C. and Freedman, R.B. (1991) The reactivities and ionization properties of the active-site dithiol groups of mammalian protein disulfide-isomerase. Biochem. J. 275: 335–340.PubMedGoogle Scholar
  35. Hawkins, H.C., DeNardi, M. and Freedman, R.B. (1991 a) Redox properties and cross-linking of the dithiol/disulfide active sites of mammalian protein disulfide-isomerase. Biochem. J. 275: 341–348.Google Scholar
  36. Hawkins, H.C., Blackburn, E.C. and Freedman, R.B. (1991b) Comparison of the activities of protein disulfide-isomerase and thioredoxin in catalyzing disulfide isomerisation in a protein substrate. Biochem. J. 275: 349–353.PubMedGoogle Scholar
  37. Helaakoski, T., Annunen, P., Vuori, K., MacNeil, I.A., Pihlajaniemi, T. and Kivirikko, K.I. (1995) Cloning, baculovirus expression, and characterization of a second mouse prolyl 4-hydroxylase α-subunit isoform: formation of an α2ß2 tetramer with the protein disulfide isomerase/ß-subunit. Proc. Natl. Acad. Sci. USA 92: 442–4431.CrossRefGoogle Scholar
  38. Hensel, G., Abmann, V and Kern, H.F. (1994) Hormonal regulation of protein disulfide isomerase and chaperone synthesis in the rat exocrine pancreas. Europ. J. Cell Biol. 63: 208–218.PubMedGoogle Scholar
  39. Honscha, W., Ottallah, M., Kistner, A., Platte, H. and Petzinger, E. (1993) A membrane-bound form of protein disulfide isomerase (PDI) and the uptake of organic anions. Biochim. Biophys.Acta 1153: 175–183.PubMedCrossRefGoogle Scholar
  40. Horiuchi, R., Yamauchi, K., Hayashi, H., Koya, S., Takeuchi, Y., Kato, K., Kobayashi, M. and Takikawa, H. (1989) Purification and characterization of 55-kDa protein with 3,5,3′-triiodo-L-thyronine-binding activity and protein disulfide isomerase from beef liver membrane. Europ. J. Biochem. 183: 529–538.PubMedCrossRefGoogle Scholar
  41. Hsu, M.P, Muhich, M.L. and Boothroyd, J.C. (1989) A developmentally regulated gene of Trypanosomes encodes a homologue of rat protein disulfide isomerase and phosphoinositol-phospholipase C. Biochemistry 28: 6440–6446.PubMedCrossRefGoogle Scholar
  42. Huth, J.R., Perin, F., Lockridge, O. Bedows, E. and Ruddon, R.W. (1993) Protein folding and assembly in vitro parallel intracellular folding and assembly. J. Biol. Chem. 268: 16472–16482.PubMedGoogle Scholar
  43. Hwang, C., Sinskey, A.J. and Lodish, H.F. (1992) Oxidized redox state of glutathione in the ER. Science 257: 1496–1502.PubMedCrossRefGoogle Scholar
  44. Ishihara, T., Tomita, H., Hasegawa, Y., Tsukagoshi, N., Yamagata, H. and Udaka, S. (1995) Cloning and characterization of the gene for a protein thiol-disulfide oxidoreductase in Bacillus brevis. J. Bacteriol. 177: 745–749.Google Scholar
  45. Jander, G., Martin, N.L. and Beckwith, J. (1994) Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation. EMBOJ. 13: 5121–5127.PubMedGoogle Scholar
  46. John, D.C.A., Grant, M.E. and Bulleid, N. (1993) Cell-free synthesis and assembly of prolyl 4-hydroxylase: the role of the)ß-subunit (PDI) in preventing misfolding and aggregation. EMBOJ. 12: 1578–1595.Google Scholar
  47. Johnson, E., Henzel, W. and Deisseroth, A. (1992) An isoform of protein disulfide isomerase isolated from chronic myelogenous leukemia cells alters complex formation between nuclear proteins and regulatory regions of interferon-inducible genes. J. Biol. Chem. 267: 14412–14417.PubMedGoogle Scholar
  48. Kallis, G.-B. and Holmgreen, A. (1980) Differential reactivity of the functional sulfhydryl groups of cysteine-32 and cysteine-35 present in the reduced form of thioredoxin from Escherichia coli. J. Biol. Chem. 255: 10261–10265.Google Scholar
  49. Kamitani, S., Akiyama, Y. and Ito, K. (1992) Identification and characterization of an Escherichia coli gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme. Cell 11: 57–62.Google Scholar
  50. Kanaya, E., Anaguchi, H. and Kikuchi, M. (1994) Involvement of the two sulfur atoms of protein disulfide isomerase and one sulfur atom of the DsbA/PpfA protein in the oxidation of mutant human lysozyme. J. Biol. Chem. 269: 4273–4278.PubMedGoogle Scholar
  51. Kasper, M., Schuh, D. and Muller, M. (1994) Immunohistochemical localization of the ß-subunit of prolyl 4-hydroxylase in human alveolar epithelial cells. Acta Histochem. 96: 309–313.PubMedGoogle Scholar
  52. Kishigami, S., Akiyama, Y. and Ito, K. (1995) Redox states of DsbA in the periplasm of Escherichia coll FEES Lett. 364: 55–68.Google Scholar
  53. Kivirikko, K.I., Myllyla, R. and Philajaniemi, T. (1989) Protein hydroxylation: prolyl 4-hydroxylase, an enzyme with four cosubstrates and a multifunctional subunit. FASEB J. 3: 1609–1617.PubMedGoogle Scholar
  54. Kivirikko, K.I., Myllyla, R. and Pihlajaniemi, T. (1992) Hydroxylation of proline and lysine residues in collagens and other animal and plant proteins. In: J.J. Harding and J.C. Crabbe (eds) Post-translational Modifications of Proteins, CRC Press, Boca Raton, pp 1–51.Google Scholar
  55. Koivu, J., Myllyla, R., Helaakoski, T., Pihlajaniemi, T., Tasanen, K. and Kivirikko, K.I. (1987) A single polypeptide acts both as the ß-subunit of prolyl 4-hydroxylase and as protein disulfide isomerase. J. Biol. Chem. 262: 6447–6449.PubMedGoogle Scholar
  56. Krishna-Rao, A.S.M. and Hausman, R.E. (1993) cDNA for R-cognin: homology with a multifunctional protein. Proc. Natl. Acad. Sci. USA 90: 2950–2954.Google Scholar
  57. Kuznetsov, G., Chen, L.B. and Nigam, S.K. 81994) Several endoplasmic reticulum stress proteins, including ERp72, interact with thyroglobulin during its maturation. J. Biol. Chem. 269: 22990–22995.Google Scholar
  58. LaMantia, M. and Lennarz, W.J. (1993) The essential function of protein disulfide isomerase does not reside in its isomerase activity. Cell 74: 1–20.CrossRefGoogle Scholar
  59. LaMantia, M., Miura, T., Tachikawa, H., Kaplan, H., Lennarz, W.J. and Mizunaga, T. (1991) Glycosylation site binding protein and protein disulfide isomerase are identical and essential for cell viability in yeast. Proc. Natl. Acad. Sci. USA 88: 4453–4457.PubMedCrossRefGoogle Scholar
  60. Lambert, N. and Freedman, R.B. (1983) Kinetics and specificity of homogenous protein disulfide-isomerase in protein disulfide isomerization and thiol-protein-disulfide oxidoreduction. Biochem. J. 213: 235–243.PubMedGoogle Scholar
  61. Lilie, H., McLaughlin, S., Freedman, R.B. and Buchner, J. (1994) Influence of protein disulfide isomerase on antibody folding in vitro. J. Biol. Chem. 269: 14290–14296.Google Scholar
  62. Lin, M.C., Gordon, D. and Wetterau, J.R. (1995) Microsomal triglyceride transfer protein (MTP) regulation in HepG2 cells: insulin negatively regulates MTP gene expression. J. Lipid Res. 36: 1073–1081.PubMedGoogle Scholar
  63. Loferer, H., Bott, M. and Hennecke, H. (1993) Bradyrhizobium japonicum TlpA, a novel membrane-anchored thioredoxin-like protein involved in the biogenesis of cytochrome aa3 and development of symbiosis. EMBO J. 12: 3373–3383.PubMedGoogle Scholar
  64. Lundstrom-Ljung, J., Birnbach, U., Rupp, K., Soling, H.D. and Holmgreen, A. (1995) Two resident ER-proteins, CaBPl and CaBP2, with thioredoxin domains, are substrates for thioredoxin reductase: comparison with protein disulfide isomerase. FEBS Lett. 357: 305–308.PubMedCrossRefGoogle Scholar
  65. Lyles, M.M. and Gilbert, H.F. (1994) Mutations in the thioredoxin sites of protein disulfide isomerase reveal functional nonequivalence of the N- and C-terminal domains. J. Biol. Chem. 269: 30946–30952.PubMedGoogle Scholar
  66. Mandel, R., Ryser, H.J.-P, Ghani, F., Wu, M. and Peak, D. (1993) Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide isomerase. Proc. Natl. Acad. Sci. USA 90L: 4112–4116.PubMedCrossRefGoogle Scholar
  67. Martin, J.L., Pumford, N.R., Larosa, A.C., Martin, B.M., Gonzaga, H.M.S., Beaven, M.A. and Pohl, L.R. (1991) A metabolite of halothane covalently binds to an endoplasmic reticulum protein that is highly homologous to phosphatidylinositol-specific phospholipase Ca but has no activity. Biochem. 178: 679–685.Google Scholar
  68. Martin, J.L., Bardwell, J.C.A. and Kuriyan, J. (1993) Crystal structure of the DsbA protein required for disulfide bond formation in vivo. Nature 365: 464–468.Google Scholar
  69. Mazzarella, R.A., Srinivasan, M., Haugejorden, S.M. and Green, M. (1990) ERp72 an abundant lumenal endoplasmic reticulum protein, contains three copies of the active site sequences of protein disulfide isomerase. J. Biol. Chem. 265: 1094–1101.PubMedGoogle Scholar
  70. Missiakas, D., Georgopoulos, C. and Raina, S. (1993) Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc. Natl. Acad. Sci. USA 90: 7084–7088.CrossRefGoogle Scholar
  71. Missiakas, D., Georgopoulos, C. and Raina, S. (1994) The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J. 13: 2013–2020.PubMedGoogle Scholar
  72. Mizunaga, T., Katakura, Y., Miura, T. and Maruyama, Y. (1990) Characterization and purification of yeast protein disulfide isomerase. J. Biochem. 108: 846–851.PubMedGoogle Scholar
  73. Mori, K., Sant, A., Kohno, K., Normington, K., Gething, M.-J. and Sambrook, J.F. (1992) A 22bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J. 11: 2583–2593.PubMedGoogle Scholar
  74. Morjana, N.A. and Gilbert, H.F. (1991) Effect of protein and peptides inhibitors on the activity of protein disulfide isomerase. Biochemistry 30: 4985–4990.PubMedCrossRefGoogle Scholar
  75. Nagayama, S., Yokoi, T., Kawaguchi, Y. and Kamataki, T. (1994 a) Occurrence of autoantibody to protein disulfide isomerase in rats with xenobiotic-induced hepatitis. J. Toxicol. Sci. 19: 1255–1261.Google Scholar
  76. Nagayama, S., Yokoi, T., Tanaka, H., Kawaguchi, Y., Shirasaka, T. and Kamataki, T. (1994b) Occurrence of autoantibody to protein disulfide isomerase in patients with hepatic disorder. J. Toxicol. Sci. 19: 163–169.PubMedGoogle Scholar
  77. Nelson, J.W. and Creighton, T.E. (1994) Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry 33: 5974–5983.Google Scholar
  78. Nguyen-Van, P.N., Rupp, K., Lampen, A. and Soling, H.-D. (1993) CaBP2 is a rat homolog of ERp72 with protein disulfide isomerase activity. Europ. J. Biochem. 213: 789–795.CrossRefGoogle Scholar
  79. Nigam, S.K., Goldberg, A.L., Ho, S., Rohde, M.F., Bush, K.T. and Sherman, M.Y. (1994) A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca2+ binding proteins and members of the thioredoxin superfamily. J. Biol. Chem. 269: 1744–1749.PubMedGoogle Scholar
  80. Noiva, R., Kimura, H., Roos, J. and Lennarz, W.J. (1991) Peptide binding by protein disulfide isomerase, a resident protein of the endoplasmic reticulum lumen. J. Biol. Chem. 266: 19645–19649.PubMedGoogle Scholar
  81. Noiva, R. and Lennarz, W.J. (1992) Protein disulfide isomerase- a multifunctional protein resident in the lumen of the endoplasmic reticulum. J. Biol. Chem. 267: 3553–3556.PubMedGoogle Scholar
  82. Noiva, R., Freedman, R.B. and Lennarz, W.J. (1993) Peptide binding to protein disulfide isomerase occurs at a site distinct from the active sites. J. Biol. Chem. 268: 19210–19217.PubMedGoogle Scholar
  83. Otsu, M., Omura, F., Yoshimori, T. and Kikuchi, M. (1994) Protein disulfide isomerase associates with misfolded human lysozyme in vivo. J. Biol. Chem. 269: 6874–6877.Google Scholar
  84. Otsu, M., Urade, R., Kito, M., Omura, F. and Kikuchi, M. (1995) A possible role of ER-60 protease in the degradation of misfolded proteins in the endoplasmic reticulum. J. Biol. Chem. 270: 14958–14961.PubMedCrossRefGoogle Scholar
  85. Peek, J. A. and Taylor, R.K. (1992) Characterization of a periplasmic thiol: disulfide interchange protein required for the functional maturation of secreted virulence factors secreted by Vibrio cholerae. Proc. Natl. Acad. Sci. USA 89: 6210–5214.CrossRefGoogle Scholar
  86. Pelham, H.R.B. (1991) Recycling of proteins between the endoplasmic reticulum and the Golgi complex. Curr. Opin. Cell Biol. 3: 585–591.PubMedCrossRefGoogle Scholar
  87. Phihlajaniemi, T., Helaakoski, T., Tasanen, K., Myllyla, R., Huhtala, M.-L., Koivu, J. and Kivirikko, K.I. (1987) Molecular cloning of the /J-subunit of human prolyl 4-hydroxylase. This subunit and protein disulfide isomerase are products of the same gene. EMBO J. 6: 643–649.Google Scholar
  88. Puig, A. and Gilbert, H.F. (1994 a) Protein disulfide isomerase exhibits chaperone and anti-chaperone activity in the oxidative refolding of lysozyme. J. Biol. Chem. 269: 7764–7771.Google Scholar
  89. Puig, A. and Gilbert, H.F. (1994b) Anti-chaperone behavior of BiP during protein disulfide isomerase-catalyzed refolding of reduced denatured lysozyme. J. Biol. Chem. 269: 25889–25896.PubMedGoogle Scholar
  90. Puig, A., Lyles, M.M., Noiva, R. and Gilbert, H.F. (1994) The role of thiol/disulfide centers and the peptide binding site in the chaperone and anti-chaperone activities of protein disulfide isomerase. J. Biol. Chem. 269: 19128–19125.PubMedGoogle Scholar
  91. Quan, H., Fan, G. and Wang, C-C. (1985) Independence of the chaperone activity of protein disulfide isomerase from its thioredoxin-like active site. J. Biol. Chem. 270: 17078–17080.Google Scholar
  92. Ricci, B., Sharp, D., O’Rourke, E., Kienzle, B., Blinderman, L., Gordon, D. Smith-Monroy, C., Robinson, G., Gregg, R.E., Rader, D.J. and Wetterau, J.R. (1995) A 30-amino acid truncation of the microsomal triglyceride transfer protein large subunit disrupts its interaction with protein disulfide isomerase and causes abetalipoproteinemia. J. Biol. Chem. 270: 14281–14285.PubMedCrossRefGoogle Scholar
  93. Roth R. and Pierce, S.B. (1987) In vivo cross-linking of protein disulfide isomerase to immunoglobulins. Biochemistry 26: 4179–4182.PubMedCrossRefGoogle Scholar
  94. Rupp, K., Birnbach, U., Lundstrom, J., Nguyen-Van, P. and Soling H.-D. (1994) Effects of CaBP2, the rat analog of ERp72, and of CaBPl on the refolding of denatured reduced proteins. J. Biol. Chem. 269: 2501–2507.PubMedGoogle Scholar
  95. Ryser, H.J.P., Mandel, R. and Ghani, F. (1991) Cell surface sulfhydryls are required for the cytotoxicity of diphtheria toxin but not of ricin in Chinese hamster ovary cells. J. Biol. Chem. 266: 18439–18442.PubMedGoogle Scholar
  96. Ryser, H.J.P., Levy, E.M., Mandel, R. and DiSciullo, G.J. (1994) Inhibition of human immunodeficiency virus infection by agents that interfere with thiol-disulfide interchange upon virus-receptor interaction. Proc. Natl. Acad. Sci. USA 91: 4559–4563.PubMedCrossRefGoogle Scholar
  97. Safran, M., Farwell, A.P. and Leonard, J.A. (1992) Thyroid hormone-dependent redistribution of the 55 kilodalton monomer of protein disulfide isomerase in cultured glial cells. Endocrinology 131: 2413–2418.PubMedCrossRefGoogle Scholar
  98. Shevchik, V.E., Condemine, G. and Robert-Baudouy, J. (1994) Characterization of DsbC, a periplasmic protein of Erwinia chrysanthemi and Escherichia coli with disulfide isomerase activity. EMBO J. 13: 2007–2012.PubMedGoogle Scholar
  99. Srivastava, S.P., Chen, N.Q., Liu, Y.X. and Holtzman, J.L. (1991) Purification and characterization of a new isozyme of thiol: protein disulfide oxireductase from rat hepatic microsomes. J. Biol. Chem. 266: 20337–20344.PubMedGoogle Scholar
  100. Srivastava, S.P., Fuchs, J.A. and Holtzman, J.L. (1993) The reported cDNA sequence for phospholipase C a encodes protein disulfide isomerase, isozyme Q2 and not phospholipase-C. Biochem. Biophys. Res. Comm. 193: 971–978.PubMedCrossRefGoogle Scholar
  101. Tachibana, C. and Stevens, T.H. (1992) The yeast EUG1 encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. Mol. Cell. Biol. 12: 4601–4611.PubMedGoogle Scholar
  102. Tachikawa, H., Miura, T., Katakura, Y. and Mizunaga, T. (1991) Molecular structure of a yeast gene, PDI1, encoding protein disulfide isomerase that is essential for cell growth. J. Biochem. 110: 306–313.PubMedGoogle Scholar
  103. Takemoto, H., Yoshimori, T., Yamamoto, A., Miyata, Y., Yahara, I., Inoue, K. and Tashiro, Y. (1992) Heavy chain binding protein (BiP/GRP78) and endoplasmin are exported from the endoplasmic reticulum of rat exocrine pancreatic cells, similar to protein disulfide-isomerase. Arch. Biochem. Biophys. 296: 129–136.PubMedCrossRefGoogle Scholar
  104. Thony-Meyer, L., Ritz, D. and Hennecke, H. (1994) Cytochrome c biogenesis in bacteria: a possible pathway begins to emerge. Mol. Microbiol. 12: 1–9.PubMedCrossRefGoogle Scholar
  105. Tomb, J.-F. (1992) A periplasmic protein disulfide oxireductase is required for transformation of Haemophilus influenzae Rd. Proc. Natl. Acad. Sci. USA 89: 10252–10256.PubMedCrossRefGoogle Scholar
  106. Tsibris, J.C.M., Hunt, L.T., Ballejo, G., Barker, W.C., Toney, L.J. and Spellacy, W.N. (1989) Selective inhibition of protein disulfide isomerase by estrogens. J. Biol. Chem. 264: 13967–13970.PubMedGoogle Scholar
  107. Urade, R. and Kito, M. (1992) Inhibition by acidic phospholipids of protein degradation by ER-60 a novel cystein protease of the endoplasmic reticulum. FEBS Lett. 312: 83–86.PubMedCrossRefGoogle Scholar
  108. Urade, R., Nasu, M., Moriymana, T., Wada, K. and Kito, M. (1992) Protein degradation by the phosphoinositide-specific phospholipase Ca family from the rat liver endoplasmic reticulum. J. Biol. Chem. 267: 15152–15159.PubMedGoogle Scholar
  109. Urade, R., Takenaka, Y. and Kito, M. (1993) Protein degradation by ERp72 from rat and mouse liver endoplasmic reticulum. J. Biol. Chem. 268: 22004–22009.PubMedGoogle Scholar
  110. Veijola, J., Koivunen, P., Annunen, P., Pihlajaniemi, T. and Kivirikko, K.I. (1994) Cloning, baculovirus expression, and characterization of the α-subunit of prolyl 4-hydroxylase from the nematode Caenorhabditis elegans. J. Biol. Chem. 269: 26746–26753.Google Scholar
  111. Vuori, K., Myllyla, R., Philajaniemi, T. and Kivirikko, K.I. (1992a) Expression and site-directed mutagenesis of human protien disulfide isomerase in Escherichia coli. J. Biol. Chem. 267: 7211–7214.PubMedGoogle Scholar
  112. Vuori, K., Pihlajaniemi, T., Myllya, R. and Kivirikko, K.I. (1992b) Site-directed mutagenesis on human protein disulfide isomerase: effect on assembly, activity and endoplasmic reticulum retention of human prolyl 4-hydroxylase in Spodoptera frugiperda insect cells. EMBO J. 11: 4213–4217.PubMedGoogle Scholar
  113. Wells, W.W., Xu, D.P., Yang, Y. and Rocque, P.A. (1990) Mammalian thioltransferase (glutared- oxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J. Biol. Chem. 265: 15361–15364.PubMedGoogle Scholar
  114. Wetterau, J.R., Aggerbeck, L.P., Laplaud, P.M. and McLean, L.R. (1990) Protein disulfide isomerase is a component of the triglyceride transfer protein complex. J. Biol. Chem. 265: 9800–9807.PubMedGoogle Scholar
  115. Wetterau, J.R., Combs, K.A., McLean, L.R., Spinner, S.N. and Aggerbeck, L.P. (1991) Protein disulfide isomerase appears to be necessary to maintain the catalytically active structure of the microsomal triglyceride transfer protein. Biochemistry 30: 9728–9735.PubMedCrossRefGoogle Scholar
  116. Wetterau, J.R., Aggerbeck, L.P, Bouma, M.E., Eisenberg, C., Munck, A., Hermier, M., Schmitz, J., Gay, G., Rader, D.J. and Gregg, R.E. (1992) Absence of microsomal tryglyceride transfer protein in individuals with abetalipoproteinemia. Science 258: 999–1001.PubMedCrossRefGoogle Scholar
  117. Whitley, P. and von Heijne, G. (1993) The DsbA-DsbB system affects the formation of disulfide bonds in periplasmic but not in intramembranous protein domains. FEBS Lett. 332: 49–51.PubMedCrossRefGoogle Scholar
  118. Wilson, W.R., Tuan, R.S., Shepley, K.J., Freedman, D.O., Greene, B.M., Awadzi, K. and Unnasch, T.R. (1994) The Onchocerca volvulus homologue of the multifunctional polypeptide protein disulfide isomerase. Mol. Biochem. Parasit. 68: 103–107.CrossRefGoogle Scholar
  119. Wunderlich, M. and Glockshuber, R. (1993) In vivo control or redox potential during protein folding catalyzed by bacterial protein disulfide isomerase (DsbA) J. Biol. Chem. 268: 24547–24550.PubMedGoogle Scholar
  120. Wunderlich, M., Otto, A., Maskos, K., Mucke, M., Seckler, R. and Glockshuber, R. (1995) Efficient catalysis of disulfide bond formation during protein folding with a single active-site cysteine. J. Mol. Biol. 247: 28–33.PubMedCrossRefGoogle Scholar
  121. Yamauchi, K., Yamamoto, T., Hayashi, H., Koya, S., Takikawa, H., Toyoshima, K. and Horiuchi, R. (1987) Sequence of membrane-associated thyroid hormone binding protein from bovine liver: its identity with protein disulfide isomerase. Biochem. Biophys. Res. Comm. 146: 1485–1492.PubMedCrossRefGoogle Scholar
  122. Yokoi, T., Nagayama, S., Kajiwara, R., Kawaguchi, Y. and Kamataki, T. (1994) Effects of cyclosporin-A and D-penicillamine in the development of hepatitis and the production of antibody to protein disulfide isomerase in LEC rats. Res. Comm. Mol. Pathol. Pharmacol. 85: 73–81.Google Scholar
  123. Yoshimori, T., Semba, T., Takemoto, H., Akagi, S., Yamamoto, A. and Tashiro, Y. (1990) Protein disulfide-isomerase in rat exocrine pancreatic cells is exported form the endoplasmic reticulum despite possessing the retention signal. J. Biol. Chem. 265: 15984–15990.PubMedGoogle Scholar
  124. Yu, J., Webb, H. and Hirst, T.R. (1992) A homologue of Escherichia coli DsbA protein involved in disulfide bond formation is required for enterotoxin biogenesis in Vibrio cholerae. Mol. Microbiol. 6: 1949–1958.CrossRefGoogle Scholar
  125. Yu, J., McLaughlin, S., Freedman, R.B. and Hirst, T.R. (1993) Cloning and active site mutagenesis of the Vibrio cholera DsbA, a periplasmic enzyme that catalyzes disulfide bond formation. J.Biol. Chem. 268: 4326–4330.PubMedGoogle Scholar
  126. Zapun, A., Bardwell, J.C.A. and Creighton, T.E. (1993) The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry 32: 5083–5092.Google Scholar
  127. Zapun, A. and Creighton, T.E. (1994) Effects of DsbA on the disulfide folding of bovine pancreatic trypsin inhibitor and a-lactalbumin. Biochemistry 33: 5202–5211.PubMedCrossRefGoogle Scholar
  128. Zapun, A., Cooper, L. and Creighton, T.E. (1994) Replacement of the active-site residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry 33: 1907–1914.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1996

Authors and Affiliations

  • J. M. Luz
    • 1
  • W. J. Lennarz
    • 1
  1. 1.Department of Biochemistry and Cell BiologyState University of New York at Stony BrookStony BrookUSA

Personalised recommendations