Skip to main content

Ascorbate radical: A valuable marker of oxidative stress

  • Chapter

Summary

The ascorbate anion is an endogenous water-soluble antioxidant that is present in biological systems. The one-electron oxidation of ascorbate produces the ascorbate free radical that is easily detectable by electron paramagnetic resonance (EPR). even in room temperature aqueous solution. The ascorbate radical has a relatively long lifetime compared to other free radicals, such as hydroxyl, peroxyl, and carbon-centered lipid radicals. This longer lifetime in conjunction with its relatively narrow EPR linewidth makes it easily detectable by EPR. In this essay we describe the EPR detection of the ascorbate radical and its use as a marker of oxidative stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewin, S. (1976) Vitamin C: Its Molecular Biology and Medical Potential. Academic Press, New York.

    Google Scholar 

  2. Davies, M.B., Austin, J. and Partridge, D.A. (1991) Vitamin C: Its Chemistry and Biochemistry. Royal Society of Chemistry, Cambridge.

    Google Scholar 

  3. Buettner, G.R. (1993) The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300: 535–543.

    Article  PubMed  CAS  Google Scholar 

  4. Buettner, G.R. and Jurkiewicz, B.A. (1993) Ascorbate free radical as a marker of oxidative stress: An EPR study. Free Radic. Biol Med. 14: 49–55.

    Article  PubMed  CAS  Google Scholar 

  5. Creutz, C. (1981) The complexities of ascorbate as a reducing agent. Inorg. Chem. 20: 4449–4452.

    Article  CAS  Google Scholar 

  6. Frei, B., England, L. and Ames, B.N. (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. USA 86: 6377–6381.

    Article  PubMed  CAS  Google Scholar 

  7. Halliwell, B. (1990) How to characterize a biological antioxidant. Free Raci. Res. Comms. 9: 1–32.

    Article  CAS  Google Scholar 

  8. McCay, P.B. (1985) Vitamin E: Interactions with free radicals and ascorbate. Ann. Rev. Nutr. 5: 323–340.

    Article  CAS  Google Scholar 

  9. Rees, S. and Slater, T.F. (1987) Ascorbic acid and lipid peroxidation: The cross-over effect. Acta Biochim. Biophys. Hung. 22: 241–249.

    CAS  Google Scholar 

  10. Niki, E. (1991) Vitamin C as an antioxidant. World Rev. Nutr. Diet. 64: 1–30.

    PubMed  CAS  Google Scholar 

  11. Krinsky, N.I. (1992) Mechanism of action of biological antioxidants. Proc. Soc. Exp. Biol. Med. 200: 248–254.

    PubMed  CAS  Google Scholar 

  12. Koppenol, W.H. and Butler, J. (1985) Energetics of interconversion reactions of oxy radicals. Adv. Free Radical Biol. 1: 91–131.

    Article  CAS  Google Scholar 

  13. Kalyanaraman, B., Darley-Usmar, V.M., Wood, I., Joseph, J. and Parthasarathy, S. (1992) Synergistic interaction between the probucoi phenoxyl radical and ascorbic acid in inhibiting the oxidation of low density lipoprotein. J. Biol. Chem. 267: 6789–6795.

    PubMed  CAS  Google Scholar 

  14. Sharma, M.K. and Buettner, G.R. (1993) Interaction of vitamin C and vitamin E during free radical stress in plasma: An ESR study. Free Radic. Biol. Med. 14: 649–653.

    Article  PubMed  CAS  Google Scholar 

  15. Rose, R.C. and Bode, A.M. (1993) Biology of free radical scavengers: An evaluation of ascorbate. FASEB J. 7: 1135–1142.

    PubMed  CAS  Google Scholar 

  16. Retsky, K.L., Freeman, M.W. and Frei, B. (1993) Ascorbic acid oxidation product(s) protect human low density lipoprotein against atherogenic modification. J. Biol. Chem. 268: 1304–1309.

    PubMed  CAS  Google Scholar 

  17. Navas, P., Villalba, J.M. and Cordoba, F. (1994) Ascorbate function at the plasma membrane. Biochim. Biophys. Acta 1197: 1–13.

    PubMed  CAS  Google Scholar 

  18. Davis, H.F., McManus, H.J. and Fessenden, R.W. (1986) An ESR study of free-radical protonation equilibria in strongly acid media. J. Phys. Chem. 90: 6400–6404.

    Article  CAS  Google Scholar 

  19. Wardman, P. (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data. 18: 1637–1755.

    Article  CAS  Google Scholar 

  20. Buxton, G.V., Greenstock, C.L., Helman, W.P. and Ross, A.B. (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution. J. Phys. Chem. Ref. Data 17: 513–886.

    CAS  Google Scholar 

  21. Erben-Russ, M., Michel, C., Bors, W. and Saran, M. (1987) Absolute rate constants of alkoxyl radical reactions in aqueous solution. J. Phys. Chem. 91: 2362–2365.

    Article  CAS  Google Scholar 

  22. Neta, P., Huie, R.E. and Ross, A.B. (1990) Rate constants for reactions of peroxyl radicals in fluid solutions. J. Phys. Chem. Ref. Data 19: 413–513.

    Article  CAS  Google Scholar 

  23. Packer, J.E., Willson, R.L., Bahnemann, P. and Asmus, K.D. (1980) Electron transfer reactions of halogenated aliphatic peroxyl radicals: measurement of absolute rate constant by pulse radiolysis. J. Chem. Soc. Perkin Trans. II. 2: 296–299.

    Article  Google Scholar 

  24. Tamba, M. and O’Neill, P. (1991) Redox reactions of thiol free radicals with the antioxidants ascorbate and chlorpromazine: Role in radioprotection. J. Chem. Soc. Perkin Trans. II 1681–685.

    Google Scholar 

  25. Forni, L.G., Monig, J., Mora-Arellano, V.O. and Willson, R.L. (1983) Thiyl free radicals: Direct observations of electron transfer reactions with phenothiazines and ascorbate. J. Chem. Soc. Perkin Trans.II 961–965.

    Google Scholar 

  26. Simic, M.G. and Jovanovic, S.V. (1989) Antioxidation mechanisms of uric acid. J. Am. Chem. Soc.111: 5778–5782.

    Article  CAS  Google Scholar 

  27. Bielski, B.H.J. (1982) Chemistry of ascorbic acid radicals. In: Seib, P.A. and Tolbert, B.M. (eds): Ascorbic Acid: Chemistry, Metabolism, and Uses. Washington DC, American Chemical Society, pp 81–100.

    Chapter  Google Scholar 

  28. Pelizzetti, E., Meisel, D., Mulac, W.A. and Neta, P. (1979) On the electron transfer from ascorbic acid to various phenothiazine radicals. J. Am. Chem. Soc. 101: 6954–6959.

    Article  CAS  Google Scholar 

  29. Bielski, B.H.J., Cabelli, D.E. and Arudi, R.L. (1985) Reactivity of HO2/O- 2radicals in aqueous solution. J. Phys. Chem. Ref. Data 14: 1041–1100.

    Article  CAS  Google Scholar 

  30. Cabelli, D.E. and Bielski, B.H.J. (1983) Kinetics and mechanism for the oxidation of ascorbic acid/ascorbate by HO2/O- 2 radicals. A pulse radiolysis and stopped-flow photolysis study. J. Phys. Chem. 87: 1809–1812.

    Article  CAS  Google Scholar 

  31. Nishikimi, M. (1975) Oxidation of ascorbic acid with superoxide anion generated by the xanthine-xanthine oxidase system. Biochem. Biophys. Res. Comms. 63: 463–468.

    Article  CAS  Google Scholar 

  32. Buettner, G.R. (1986) Ascorbate autoxidation in the presence of iron and copper chelates. Free Rad. Res. Comms. 1: 349–353.

    Article  CAS  Google Scholar 

  33. Buettner, G.R. (1990) Ascorbate oxidation: UV absorbance of ascorbate and ESR spectroscopy of the ascorbyl radical as assays for iron. Free Rad. Res. Comms. 10: 59.

    Google Scholar 

  34. Ross, A.B., Mallard, W.G., Hleman, W.P., Buxton, G.V., Huie, R.E. and Neta, P. (1994) NDRL-NIST Solution Kinetics Database: -Ver. 2.0. Gaithersburg; NIST.

    Google Scholar 

  35. Kahn, M.M.T. and Martell, A.E. (1967) Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation. J. Am. Chem. Soc. 89: 4176–4185.

    Article  Google Scholar 

  36. Khan. M.M.T. and Martell, A.E. (1967) Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. II. Cupric and ferric chelate catalyzed oxidation. J. Am. Chem. Soc. 89: 7104–7111.

    Article  PubMed  CAS  Google Scholar 

  37. Scarpa, M., Stevanto, R., Viglino, P. and Rigo, A. (1983) Superoxide ion as active intermediate in the autoxidation of ascorbate by molecular oxygen. J. Biol. Chem. 258: 6695–6697.

    PubMed  CAS  Google Scholar 

  38. Williams, N.H. and Yandell, J.K. (1982) Outer-sphere electron-transfer reaction of ascorbate anions. Aust. J. Chem. 35: 1133–1144.

    Article  CAS  Google Scholar 

  39. Winterbourn, C.C. ( 1993) Superoxide as an intracellular radical sink. Free Radic. Biol. Med. 14: 85–90.

    Article  PubMed  CAS  Google Scholar 

  40. Koppenol, W.H. (1993) A thermodynamic appraisal of the radical sink hypothesis. Free Radic. Biol. Med. 14: 91–94.

    Article  PubMed  CAS  Google Scholar 

  41. Foerster, G., Weis, W. and Staudinger, H. (1965) Messung der Elektronenspinresonanz an Semidehydroascorbinsäure. Annałen der Chemie 690: 166–169.

    CAS  Google Scholar 

  42. Stegmann, H.B., Schuler, P., Westphal, S. and Wagner, E. (1993 ) Oxidative stress of crops monitored by EPR. Z. Naturforsch. C. 48: 766–772.

    CAS  Google Scholar 

  43. Minetti, M., Forte, T., Soriani, M., Quaresima, V., Menditoo, A. and Ferrari, M. (1992) Iron-induced ascorbate oxidation in plasma as monitored by ascorbate free radial formation. Biochem. J. 282: 459–465.

    PubMed  CAS  Google Scholar 

  44. Miller, D.M. and Aust, S.D. (1989) Studies of ascorbate-dependent, iron catalyzed lipid peroxidation. Arch. Biochem. Biophys. 271: 113–119.

    Article  PubMed  CAS  Google Scholar 

  45. Buettner, G.R. and Chamulitrat, W. (1990) The catalytic activity of iron in synovial fluid as monitored by the ascorbate free radical. Free Radic. Biol Med. 8: 55–56.

    Article  PubMed  CAS  Google Scholar 

  46. Buettner, G.R., Motten, A.G., Hall, R.D. and Chignell, C.F. (1987) ESR detection of endogenous ascorbate free radical in mouse skin: Enhancement of radical production during UV irradiation following topical application of chlorpromazine. Photochem. Photobiol 46: 161–164.

    Article  PubMed  CAS  Google Scholar 

  47. Jurkiewicz, B.A. and Buettner, G.R. (1994) Ultraviolet light-induced free radical formation in skin: An electron paramagnetic resonance study. Phoîochem. Photobiol. 59: 1–4.

    Article  CAS  Google Scholar 

  48. Roginsky, V.A. and Stegmann, H.B. (1994) Ascorbyl radical as natural indicator of oxidative stress: Quantitative regularities. Free Radic. Biol. Med. 17: 93–103.

    Article  PubMed  CAS  Google Scholar 

  49. Timmins, G.S. and Davies, M.J. (1993) Free radical formation in murine skin treated with tumour promoting organic peroxides. Carcinogensis 14: 1499–1503.

    Article  CAS  Google Scholar 

  50. Tomasi, A., Albano, E., Bini, A., Iannone, A.C. and Vannini, V. (1989) Ascorbyl radical is detected in rat isolated hepatocytes suspensions undergoing oxidative stress: and early index of oxidative damage in cells. Adv. in the Biosciences 76: 325–334.

    Google Scholar 

  51. Arroyo, C.M., Kramer, J.H., Dickens, B.F. and Weglicki, W.B. (1987) Identification of free radicals in myrocardial ischemia/reperfusion by spin trapping with nitrone DMPO. FEBS Lett. 221: 101–104.

    Article  PubMed  CAS  Google Scholar 

  52. Nohl, H., Stolze, K., Napetschnig, S. and Ishikawa, T. (1991) Is oxidative stress primarily involved in reperfusion injury of the ischemic heart? Free Radic. Biol. Med. 11: 581–588.

    Article  PubMed  CAS  Google Scholar 

  53. Sharma, M.K., Buettner, G.R., Spencer, K.T. and Kerber, R.E. (1994) Ascorbyl free radical as a real-time marker of free radical generation in briefly ischemic and reperfused hearts. Circulation Res. 74: 650–658.

    PubMed  CAS  Google Scholar 

  54. Pietri, S., Culcasi, M., Stella, L. and Cozzone, P.J. (1990) Ascorbyl free radical as a reliable indicator of free-radical-mediated myocardial ischemic and post-ischemic injury. Eur. J. Biochem. 193: 845–854.

    Article  PubMed  CAS  Google Scholar 

  55. Pietri, S., Seguin, J.R., D’Arbigny, P. and Culcasi, M. (1994) Ascorbyl free radical: A noninvasive marker of oxidative stress in human open-heart surgery. Free Radic. Biol. Med. 16: 523–528.

    Article  PubMed  CAS  Google Scholar 

  56. Minakata, K., Suzuki, O., Saito, S. and Harada, N. (1993) Ascorbate radical levels in human sera and rat plasma intoxicated with paraquat and diaquat. Arch. Toxicol. 67: 126–130.

    Article  PubMed  CAS  Google Scholar 

  57. Stark, J.M., Jackson, S.K., Rowlands, C.C. and Evans, J.C (1988) Increases in ascorbate free radical concentration after endotoxin in mice. In: C. Rice-Evans and B. Halliwell (eds): Free Radicals: Methodology and Concepts. Richelieu, London, pp 201–209.

    Google Scholar 

  58. Sasaki, R., Kurokawa, T. and Tero-Kubota, S. (1982) Nature of serum ascorbate radical and its quantitative estimation. Tohoku J. Exp. Med. 136: 113–119.

    Article  PubMed  CAS  Google Scholar 

  59. Sasaki, R., Kurokawa, T. and Tero-Kubota, S. (1983) Ascorbate radical and ascorbic acid level in human serum and age. J. Gerontology 1: 26–30.

    Google Scholar 

  60. Sasaki, R., Kobayasi, T., Kurokawa, T., Shibuya, D. and Tero-Kubota, S. (1984) Significance of the equilibrium constant between serum ascorbate radical and ascorbic acids in man. Tohoku J. Exp. Med. 144: 203–210.

    Article  PubMed  CAS  Google Scholar 

  61. Sasaki, R., Kurokawa, T. and Shibuya, D. (1985) Factors influencing ascorbate free radical formation. Biochem. Intern. 10: 155–163.

    CAS  Google Scholar 

  62. Ohara, T., Sasaki, R., Shibuya, D., Asaki, S. and Toyota, T. (1992) Effect of omeprazole on ascorbate free radical formation. Tohoku J. Exp. Med. 167: 185–188.

    Article  PubMed  CAS  Google Scholar 

  63. Buettner, G.R. (1988) In the absence of catalytic metals ascorbate does not autoxidize at pH 7: ascorbate as a test for catalytic metals. J. Biochem. Biophys. Meth. 16: 27–40.

    Article  PubMed  CAS  Google Scholar 

  64. Laroff, G.P., Fessenden, R.W. and Schuler, R.H. (1972) The electron spin resonance spectra of radical intermediates in the oxidation of ascorbic acid.and related substances. J. Am. Chem. Soc. 94: 9062–9073.

    Article  PubMed  CAS  Google Scholar 

  65. Buettner, G.R. and Kiminyo, K.P. (1992) Optimal EPR detection of weak nitroxide spin adduct and ascorbyl free radical signals. J. Biochem. Biophys. Meth. 24: 147–151.

    Article  PubMed  CAS  Google Scholar 

  66. Miller, D.M., Buettner, G.R. and Aust, S.D. (1990) Transition metals as catalysts of “autoxidation” reactions. Free Radic. Biol. Med. 8: 95–108.

    Article  PubMed  CAS  Google Scholar 

  67. Guzman Barron, E.S., DeMeio, R.H. and Klemperer, F. (1936) Studies of biological oxidations. Copper and hemochromogens as catalysts for the oxidation of ascorbic acid. The mechanism of the oxidation. J. Biol. Chem. 112: 625–640.

    Google Scholar 

  68. Borsook, H., Davenport, H.W., Jeffreys, C.E.P. and Warner, R.C. (1937) The oxidation of ascorbic acid and its reduction in vitro and in vivo. J. Biol. Chem. 117: 237–279.

    CAS  Google Scholar 

  69. Weissberger, A., LuValle, J.E. and Thomas, D.S. (1943) Oxidation processes. XVI. The autoxidation of ascorbic acid. J. Am. Chem. Soc. 65: 1934–1939.

    Article  CAS  Google Scholar 

  70. Halliwell, B. and Foyer, C.H. (1976) Ascorbic acid, metal ions and the superoxide radical. Biochem. J. 155: 697–700.

    PubMed  CAS  Google Scholar 

  71. Britigan, B.E., Pou, S., Rosen, G.M., Lilleg, D.M. and Buettner, G.R. (1990) Hydroxyl radical is not a product of the reaction of xanthine oxidase and xanthine. J. Biol. Chem. 265: 17533–17538.

    PubMed  CAS  Google Scholar 

  72. Buettner, G.R. (1990) Use of ascorbate as test for catalytic metals in simple buffers. Meth. Enzymol. 186: 125–127.

    Article  PubMed  CAS  Google Scholar 

  73. Niki, E. (1990) Free radical initiators as source of water- or lipid-soluble peroxyl radicals. Methods Enzymol. 186: 100–108.

    Article  PubMed  CAS  Google Scholar 

  74. Willis, E.D. (1969) Lipid peroxide formation in microsomes, general considerations. Biochem. J. 113: 315–324.

    Google Scholar 

  75. Willis, E.D. (1969) Lipid peroxide formation in microsomes, the role of non-haem iron. Biochem. J. 113: 325–332.

    Google Scholar 

  76. Willis, E.D. (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem. J. 99: 667–675.

    Google Scholar 

  77. Baysal, E., Sullivan, S.G. and Stern, A. (1989) Prooxidant and antioxidant effects of ascorbate on tBuOOH-induced erythrocyte membrane damage. Int. J. Biochem. 21: 1109–1113.

    Article  PubMed  CAS  Google Scholar 

  78. Wagner, B.A., Buettner, G.R. and Burns, C.P. (1993) Increased generation of lipidderived and ascorbate free radicals by L1210 cells exposed to the ether lipid edelfosine. Cancer Res. 53: 711–713.

    PubMed  CAS  Google Scholar 

  79. Wagner, B.A., Buettner, G.R. and Burns, C.P. (1993) Free radical-mediated lipid peroxidation in cells: Oxidizability is a function of cell lipid bis-allylic hydrogen content. J. Biol. Chem. 33: 4449–4453.

    Google Scholar 

  80. Taylor, H.R., West, S.K., Rosenthal, F.S., Munoz, B., Newland, H., Abbey, H. and Emmett, E.A. (1988) Effect of ultraviolet radiation on cataract formation. New Eng. J. Med. 319: 1429–33.

    Article  PubMed  CAS  Google Scholar 

  81. Weiter, J.J. and Finch, E.D. (1975) Paramagnetic species in cataractous human lenses. Nature 254: 536–537.

    Article  PubMed  CAS  Google Scholar 

  82. Murakami, J., Okazaki, M. and Shiga, T. (1989) Near UV-induced free radicals in ocular lens, studies by ESR and spin trapping. Photochem. Photobiol. 49: 465–473.

    Article  PubMed  CAS  Google Scholar 

  83. Mori, A., Wang, X. and Liu, J. (1994) Electron spin resonance assay of ascorbate free radicals in vivo. Methods Enzymology 233: 149–154.

    Article  CAS  Google Scholar 

  84. Wang, X., Liu, J., Yokoi, í., Kohno, M. and Mori, A. (1992) Direct detection of circulating free radicals in the rat using electron spin resonance spectrometry. Free Radic. Biol. Med. 12: 121–126.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Buettner, G.R., Jurkiewicz, B.A. (1995). Ascorbate radical: A valuable marker of oxidative stress. In: Favier, A.E., Cadet, J., Kalyanaraman, B., Fontecave, M., Pierre, JL. (eds) Analysis of Free Radicals in Biological Systems. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9074-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9074-8_11

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9895-9

  • Online ISBN: 978-3-0348-9074-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics