Advertisement

Beyond area relationships: Extinction and recolonization in molecular marine biogeography

  • Clifford W. Cunningham
  • Timothy M. Collins

Summary

In vicariance biogeography, the traditional focus on solely determining area relationships can obscure biologically interesting complexity. Even in the case of neighboring sister areas, the rise and fall of barriers to dispersal can yield a complex pattern of vicariance and interchange. Vicariance biogeographers view incongruent historical patterns as noise that must be filtered out. Here, we sharpen the focus of vicariance biogeography, and attempt to identify organismal characteristics that unite sets of taxa with congruent histories. Emphasizing examples from coastal marine invertebrates, we apply this perspective to two well-studied model systems: the southeastern United States, and the trans-Arctic interchange through the Bering Strait.

In both systems, populations from neighboring areas tend to show either great genetic similarity, usually inferred to result from continuing gene flow, or reciprocal monophyly accompanied by deep genetic divergence. Because dispersal ability is a poor predictor of which taxa fall in either category, we consider the possibility that genetic similarities often attributed to continuing gene flow may result instead from extinction in one area followed by recolonization from the other. Similarly, reciprocal monophyly between neighboring areas suggests that taxa in those areas have resisted recent local extinction. Our perspective shifts focus away from larval dispersal ability, which has long dominated molecular marine biogeography. Instead, we can focus on extinction itself, asking why taxa showing reciprocal monophyly have resisted local extinction.

A focus on extinction and recolonization is especially fruitful for understanding the trans-Arctic interchange. In group after group, researchers have found genetic evidence consistent with local extinction in the NW Atlantic followed by recolonization either from the NE Atlantic or from the North Pacific. In general, taxa which are restricted to rocky substrata appear to have been more prone to local extinction. The ability to recolonize the NW Atlantic from neighboring areas does not appear to depend on dispersal ability, although present-day geographical distribution does seem to be important. We conclude by reviewing some of the reasons why biogeographers have failed to find a consistent relationship between larval dispersal ability and patterns of geographical subdivision.

Keywords

Dispersal Ability Local Extinction Rocky Shore Hermit Crab Area Relationship 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, J. T. (1988) Climatic evolution of the eastern Canadian Arctic and Baffin Bay during the past three million years. In: Shackleton, N. J. West, R. G. and Owens, D. Q. (eds) The Past Three Million Years: Evolution of Climatic Variability in the North Atlantic Region, The Royal Society, London, pp. 235–250.Google Scholar
  2. Avise, J. C. (1992) Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63: 62–76.CrossRefGoogle Scholar
  3. Avise, J. C. (1994) Molecular Markers, Natural History and Evolution, Chapman and Hall, New York.CrossRefGoogle Scholar
  4. Bremer, K. (1992) Ancestral areas: a cladistic reinterpretation of the center of origin concept. Syst. Zool. 41(4): 436–445.Google Scholar
  5. Briggs, J. C. (1974) Marine Zoogeography, McGraw Hill, New York.Google Scholar
  6. Brooks, D. R. (1985) Historical ecology: a new approach to studying the evolution of ecological associations. Ann. Miss. Bot. Gard. 72: 660–680.CrossRefGoogle Scholar
  7. Brooks, D. R. and McLennan, D. A. (1991) Phytogeny, Ecology and Behavior, The University of Chicago Press, Chicago and London.Google Scholar
  8. Brown, A. F. (1995) The population genetics and biogeography of the barnacle, Semibalanus balanoides. Brown University.Google Scholar
  9. Brundin, L. (1981) Croizat’s panbiogeography versus phylogenetic biogeography. In: Nelson G., Rosen DE (eds) Vicariance biogeography: a critique, Columbia University Press, New York, pp. 94–158.Google Scholar
  10. Burton, R. S. (1983) Protein polymorphisms and genetic differentiation of marine invertebrate populations. Mar. Biol. Lett. 4: 193–206.Google Scholar
  11. Burton, R. S. and Feldman, M. W. (1982) Population genetics of coastal and estuarine invertebrates: does larval behavior influence population structure? In: Kennedy, V. S. (ed.) Estuarine Comparisons, Academic Press, New York, pp. 537–551.Google Scholar
  12. Carter, L. D., Brigham-Grette, J., Marincovich, L., Jr., Pease, V. L. and Hillhouse, J. W. (1986) Late Cenozoic Arctic Ocean sea ice and terrestrial paleoclimate. Geology 14: 675–678.CrossRefGoogle Scholar
  13. Carlton, J. T. and Geller, J. B. (1993) Ecological roulette: the global transport of nonindige-nous marine organisms. Science 261: 78–82.CrossRefGoogle Scholar
  14. Collins, T. M., Frazer, K., Palmer, A. R., Vermeij, G. J. and Brown, W. M. (1996) Evolutionary history of northern hemisphere Nucella (Gastropoda, Muricidae): molecular, morphological, ecological, and paleontological evidence. Evolution 50(6): 2287–2304.CrossRefGoogle Scholar
  15. Croizat, L., Nelson, G. and Rosen, D. E. (1974) Centers of origin and related concepts. Syst. Zool. 23(2): 265–87.CrossRefGoogle Scholar
  16. Cronin, T. M. (1988) Evolution of marine climates of the U. S. Atlantic coast during the past four million years. In: Shackleton, N. J., West, R. G. and Owens, D. Q. (eds) The Past Three Million Years: Evolution of Climatic Variability in the North Atlantic Region, The Royal Society, London, pp. 327–356.Google Scholar
  17. Cunningham, C. W. and Buss, L. W. and Anderson, C. A. (1991) Molecular and geologic evidence of shared history between hermit crabs and the symbiotic genus Hydractinia. Evolution 458(6): 1301–1316.CrossRefGoogle Scholar
  18. Cunningham, C. W., Blackstone, N. W. and Buss, L. W. (1992) Evolution of king crabs from hermit crab ancestors. Nature 355: 539–542.PubMedCrossRefGoogle Scholar
  19. Cunningham, C. W. and Collins, T. (1994) Developing model systems for molecular bio-geography: vicariance and interchange in marine invertebrates. In: Schierwater, B., Streit, B., Wagner, G. P. and DeSalle, R. (eds) Molecular Ecology and Evolution: Approaches and Applications, Birkhäuser, Basel, pp. 405–433.Google Scholar
  20. Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Jousel, Sveinbjörnsdottir, J. and Bond, G. (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364: 218–220.CrossRefGoogle Scholar
  21. Davenport, J., Barnett, P. R. O. and McAllen, R. J. (1997) Environmental tolerances of three species of the harpactacoid copepod genus Tigriopus. Jour. Mar. Biol. Ass. U. K 77: 3–16.CrossRefGoogle Scholar
  22. Durham, J. W. and MacNeil, F. S. (1967) Cenozoic migrations of marine invertebrates through the Bering Strait region. In: Hopkins, D. M. (ed.) The Bering Land Bridge, Stanford University Press, Stanford, CA, pp. 326–349.Google Scholar
  23. Edmands, S. and D. C. Potts (1997) Population genetic structure in brooding sea anemones (Epiactis spp.) with contrasting reproductive modes. Mar. Biol. 127: 485–498.CrossRefGoogle Scholar
  24. Felder, D. L. and Staton, J. L. (1994) Genetic differentiation in trans-Floridian species complexes of Sesarma and Uca (Crustacea; Decapoda: Brachyura). J. Crust. Biol. 14(2): 191–209.CrossRefGoogle Scholar
  25. Frey, D. G. (1965) Other invertebrates–an essay in biogeography. In: Wright, J. and Frey, D. G. (eds) The Quaternary of the United States, Princeton University Press, Princeton, NJ, pp. 613–631.Google Scholar
  26. Futuyma, D. J. and McCafferty, S. S. (1990) Phylogeny and the evolution of host plant associations in the leaf beetle genus Ophraella (Coleoptera, Chrysomelidae). Evolution 44(8): 1885–1913.CrossRefGoogle Scholar
  27. Giese, A. C. and J. S. Pearse (1977) Reproduction of Marine Invertebrates, vol. 4, Molluscs: Gastropods and Cephalopods, Academic Press, New York.Google Scholar
  28. Haglund, T. R., Buth, D. G. and Lawson, R. (1992) Allozyme variation and phylogenetic relationships of Asian, North American, and European populations of the threespine stickleback, Gasterosteus aculeatus. Copeia 1992: 432–443.CrossRefGoogle Scholar
  29. Hedgecock, D. (1986) Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bull. Mar. Sci. 39(2): 550–564.Google Scholar
  30. Hellberg, M. E. (1994) Relationships between inferred levels of gene flow and geographic distance in a philopatric coral, Balanophyllia elegans. Evolution 48: 1829–1854.CrossRefGoogle Scholar
  31. Hellberg, M. E. (1996) Dependence of gene flow on geographic distance in two solitary corals with different larval dispersal capabilities. Evolution 50: 1167–1175.CrossRefGoogle Scholar
  32. Helmuth, B., Veit, R. R. and Holberton, R. (1994) Long-distance dispersal of a subantarctic brooding bivalve (Gaimardia trapesina) by kelp rafting. Mar. Biol. 120: 421–426.CrossRefGoogle Scholar
  33. Herman, Y. and Hopkins, D. M. (1980) Arctic Ocean climate in late Cenozoic time. Science 209: 557–562.PubMedCrossRefGoogle Scholar
  34. Hewitt, G. M. (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247–276.Google Scholar
  35. Humphries, C. J. and Parenti, L. R. (1986) Cladistic Biogeography, Clarendon Press, Oxford.Google Scholar
  36. Ingolfsson, A. (1992) The origin of the rocky shore fauna of Iceland and the Canadian Maritimes. J. Biog. 19: 705–712.CrossRefGoogle Scholar
  37. Ingolfsson, A. (1995) Floating clumps of seaweed around Iceland: natural microcosms and a means of dispersal for shore fauna. Mar. Biol. 122: 13–21.CrossRefGoogle Scholar
  38. Jablonski, D. (1986) Larval ecology and macroevolution in marine invertebrates. Bull. Mar. Sci. 39: 565–587.Google Scholar
  39. Jablonski, K. and Lutz, R. A. (1983) Larval ecology of marine benthic invertebrates: Paleobiological implications. Biol. Rev. 58: 21–89.CrossRefGoogle Scholar
  40. Johannesson, K. (1988) The paradox of Rockall: why is a brooding gastropod (Littorina saxatilis) more widespread than one having a planktonic larval dispersal stage (L. littorea)? Mar. Biol. 99: 507–513.CrossRefGoogle Scholar
  41. Jokeil, P. L. (1989) Rafting of reef corals and other organisms at Kwajalein Atoll. Mar. Biol. 101: 483–493.CrossRefGoogle Scholar
  42. Jokiel, P. L. (1990) Long-distance dispersal by rafting: reemergence of an old hypothesis. Endeavour, New Series 14: 66–73.Google Scholar
  43. Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.PubMedCrossRefGoogle Scholar
  44. Kohn, A. J. and Perron, F. E. (1994) Life History and Biogeography: Patterns in Conus, Clarendon Press, Oxford.Google Scholar
  45. McDonald, J. H., Seed, R. and Koehn, R. K. (1991) Allozymes and morphometric characters of three species of Mytilus in the Northern and Southern Hemispheres. Mar. Biol. III: 323–333.CrossRefGoogle Scholar
  46. McMillan, W. O., Raff, R. A. and Palumbi, S. R. (1992) Population genetic consequences of developmental evolution in sea urchins (Genus Heliocidaris). Evolution 46: 1299–1312.CrossRefGoogle Scholar
  47. Meehan, B. W. (1985) Genetic comparison of Macotna balthica (Bivalvia, Telinidae) from the eastern and western North Atlantic Ocean. Mar. Ecol. Frog. Ser. 22: 69–76.CrossRefGoogle Scholar
  48. Meehan, B. W., Carlton, J. T. and Wenne, R. (1989) Genetic affinities of the bivalve Maeoma balthica from the Pacific coast of North America: evidence for recent introduction and historical distribution. Mar. Biol. 102: 235–241.CrossRefGoogle Scholar
  49. Neigel, J. E. and Avise, J. C. (1986) Phylogenetic Relationships of Mitochondrial DNA Under Various Demographic Models of Speciation, Academic Press, Orlando, FL.Google Scholar
  50. Nelson, G. J. and Platnick, N. I. (1981) Systematics and Biogeography: Cladistics and Vicariance, Columbia University Press, New York.Google Scholar
  51. Nelson, G. J. and Rosen, D. E. (1981) Vicariance Biogeography: A Critique, Columbia University Press, New York City.Google Scholar
  52. Ó Foighil, D. (1989) Planktotrophic larval development is associated with a restricted geographic range in Lasaea, a genus of brooding, hermaphroditic bivalve. Mar. Biol. 103: 349–358.CrossRefGoogle Scholar
  53. Ó Foighil, D., Hilbish, T. J. and Showman, R. S. (1996) Mitochondrial gene variation in Mercenaria clam sibling species reveals a relict secondary contact zone in the western Gulf of Mexico. Mar. Biol. 126: 675–683.CrossRefGoogle Scholar
  54. Orti, G., Bell, M. A., Reimchen, T. E. and Meyer, A. (1994) Global survey of mitochondrial DNA sequences in the threespine stickleback: evidence for recent migrations. Evolution 48(3): 608–622.CrossRefGoogle Scholar
  55. Page, R. D. M. (1988) Quantitative cladistic biogeography: constructing and comparing area cladograms. Syst. Zool. 37: 254–270.CrossRefGoogle Scholar
  56. Page, R. D. M. (1991) Clocks, clades, and cospeciation: comparing rates of evolution and timing of cospeciation events in host-parasite assemblages. Syst. Zool. 40(2): 188–198.CrossRefGoogle Scholar
  57. Palumbi, S. R. (1994) Genetic divergence, reproductive isolation and marine speciation. Annu. Rev. Ecol. Syst. 25: 547–572.CrossRefGoogle Scholar
  58. Palumbi, S. R. (1995) Macrospatial genetic structure and speciation in marine taxa with high dispersal abilities. In: Ferraris, J. D. and Palumbi, S. R. (eds) Molecular Zoology: Advances, Strategies and Protocols, Wiley-Liss, New York, pp. 101–117.Google Scholar
  59. Palumbi, S. R. and Kessing, B. D. (1991) Population biology of the trans-Arctic interchange: mtDNA sequence similarity between Pacific and Atlantic sea urchins. Evolution 45(8): 1790–1805.CrossRefGoogle Scholar
  60. Palumbi, S. R. and Wilson, A. C. (1990) Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and 5. droebachiensis. Evolution 44(2): 403–415.CrossRefGoogle Scholar
  61. Parker, T. and Tunnicliffe, V. (1994) Dispersal strategies of the biota of an oceanic seamount: implications for ecology and biogeography. Biol. Bull. 187: 336–345.CrossRefGoogle Scholar
  62. Patterson, C. (1981) Methods of paleobiogeography. In: Nelson, G. and Rosen, D. E. (eds) Vicariance Biogeography: A Critique, Columbia University Press, New York, pp. 446–489.Google Scholar
  63. Platnick, N. I. (1981) The progression rule or progress beyond the rules of biogeography. In: Nelson, G. and Rosen, D. E. (eds) Vicariance Biogeography: A Critique, Columbia University Press, New York, pp. 144–150.Google Scholar
  64. Platnick, N. I. and Nelson, G. (1978) A method of analysis for historical biogeography. Syst. Zool. 27: 1–16.CrossRefGoogle Scholar
  65. Raffi, S., Stanley, S. M. and Marasti, R. (1985) Biogeographic patterns and Plio-Pleistocene extinction of Bivalvia in the Mediterranean and southern North Sea. Paleobiology 11: 368–388.Google Scholar
  66. Rawson, P. D. and Hilbish, T. J. (1995) Evolutionary relationships among the male and female mitochondrial DNA lineages in the Mytilus edulis species complex. Molec. Biol. Evol. 12(5): 893–901.PubMedGoogle Scholar
  67. Reid, D. G. (1990) A cladistic phylogeny of the genus Littorina (Gastropoda): Implications for evolution of reproductive strategies and for classification. Hydrobiology 193: 1–19.CrossRefGoogle Scholar
  68. Reid, D. G. (1996) Systematics and Evolution of Littorina, The Ray Society, Dorchester, Dorset.Google Scholar
  69. Reid, D. G., Rumbak, E. and Thomas, R. H. (1996) DNA, morphology and fosils: phylogeny and evolutionary rates of the gastropod genus Littorina. Phil. Trans. R. Soc. Lond. B 351: 877–895.CrossRefGoogle Scholar
  70. Rosen, D. E. (1976) A vicariance model of Caribbean biogeography. Syst. Zool. 27: 159–188.CrossRefGoogle Scholar
  71. Sarver, S. K., Landrum, M. C. and Foltz, D. W. (1992) Genetics and taxonomy of ribbed mussels (Geukensia spp.). Mar. Biol. 113: 385–390.CrossRefGoogle Scholar
  72. Scheltema, R. S. (1979) Dispersal of pelagic larvae and the zoogeography of Tertiary marine benthic gastropods. In: Gray, J. and Boucot, A. J. (eds) Historical Biogeography, Plate Tectonics and the Changing Environment, Oregon State University Press Corvallis, Oregon, pp. 391–397.Google Scholar
  73. Scheltema, R. S. (1986) On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of problems. Bull. Mar. Sci. 39(2): 290–322.Google Scholar
  74. Shackleton, N. J., Backman, J., Zimmerman, H., Kent, D. V., Hall, M. A., Roberts, D. G., Schnitker, D., Baldauf, J. G., Desprairies, A., Homrighausen, R., Huddleston, P., Keene, J. B., Kaltenback, A. H., Krumsiek, K. A. O., Morton, A. C., Murray, J. W. and Westberg-Smith, J. (1984) Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307: 620–623.CrossRefGoogle Scholar
  75. Slatkin, M. (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theor. Pop. Biol.U (3): 253–262.Google Scholar
  76. Slatkin, M. (1985) Gene flow in natural populations. Annu. Rev. Ecol. Syst. 0(0): 393–430.CrossRefGoogle Scholar
  77. Slatkin, M. (1987) Gene flow and the geographic structure of natural populations. Science 236(4803): 787–792.PubMedCrossRefGoogle Scholar
  78. Stanley, S. M. (1986) Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the western Atlantic bivalve fauna. Palaios 1: 17–36.CrossRefGoogle Scholar
  79. Sturmbauer, C., Levinton, J. S. and Christy, J. (1996) Molecular phylogeny analysis of fiddler crabs: test of the hypothesis of increasing behavioral complexity in evolution. Proc. Natl. Acad. Sci. USA 93(20): 10855–10857.PubMedCrossRefGoogle Scholar
  80. Taylor, E. B. and Dodson, J. J. (1994) A molecular analysis of relationships and biogeography within a species complex of Holarctic fish (genus Osmerus). Molec. Ecol. 3: 235–248.CrossRefGoogle Scholar
  81. Templeton, A. R. (1993) The “Eve” hypothesis: a genetic critique and reanalysis. Amer. Anth. 95: 51–72.CrossRefGoogle Scholar
  82. Templeton, A. R. (1994) The role of molecular genetics in speciation studies. In: Schierwater, B., Streit, B., Wagner, G. P. and DeSalle, R. (eds) Molecular Ecology and Evolution: Approaches and Applications, Birkhäuser, Basel, pp. 455–478.Google Scholar
  83. Valentine, J. W. and Jablonski, D. (1993) Fossil communities: compositional variation at many time scales. In: Ricklefs, R. E. Schlüter, D. (eds) Species Diversity in Ecological Communities: Historical and Geographical Perspectives, University of Chicago Press, Chicago, IL, pp. 341–349.Google Scholar
  84. van Oppen M. J. H., Diekmann, O. E., Wiencke, C. Stam, W. T. and Olsen, J. L. (1994) Tracking dispersal routes: phylogeography of the Arctic-Antarctic disjunct seaweed Acrosiphonia (Chlorophyta). J. Phycol. 30: 67–80.CrossRefGoogle Scholar
  85. van Oppen, M. J. H., Draisma, S. G. A. Olsen, J. L. and Stam, W. T. (1995) Multiple trans-Arctic passages in the red alga Phycodrys rubens: evidence from nuclear rDNA ITS sequences. Mar. Biol. 123: 179–188.CrossRefGoogle Scholar
  86. Varvio, S.-L., Koehn, R. K. and Väinölä R (1988) Evolutionary genetics of the Mytilus edulis complex in the North Atlantic region. Mar. Biol. 98: 51–60.CrossRefGoogle Scholar
  87. Vermeij, G. J. (1978) Biogeography and Adaptation, Harvard University Press, Cambridge, MA.Google Scholar
  88. Vermeij, G. J. (1989) Geographical restriction as a guide to the causes of extinction: the case of the cold northern oceans during the Neogene. Paleobiology 15: 335–356.Google Scholar
  89. Vermeij, G. J. (1991a) Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17(3): 281–307.Google Scholar
  90. Vermeij, G. J. (1991b) When biotas meet: understanding biotic interchange. Science 253: 1099–1104.PubMedCrossRefGoogle Scholar
  91. Wade, M. J. and McCauley, D. E. (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42: 995–1005.CrossRefGoogle Scholar
  92. Webb, S. D. (1985) Late Cenozoic mammal dispersals between the Americas. In: Stehli, G. G. and Webb, S. D. (eds). The Great American Biotic Interchange, Plenum Press, New York, pp. 357–386.Google Scholar
  93. Wethey, D. S. (1985) Catastrophe, extinction and species diversity: a rocky intertidal example. Ecology 66(2): 445–456.CrossRefGoogle Scholar
  94. Wiley, E. O. (1988) Vicariance Biogeography. Annu. Rev. Ecol. Syst. 19: 513–42.CrossRefGoogle Scholar
  95. Worcestor, S. E. (1994) Adult rafting versus larval swimming: dispersal and recruitment of a botryllid ascidian on eelgrass. Mar. Biol. 121: 309–317.CrossRefGoogle Scholar
  96. Zaslavskaya, N. I., Sergievsky, S. O. and Tatarenkov, A. N. (1992) Allozyme similarity of Atlantic and Pacific species of Littorina (Gastropoda: Littorinidae). J. Mollusc. Stud. 58: 377–384.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1998

Authors and Affiliations

  • Clifford W. Cunningham
    • 1
  • Timothy M. Collins
    • 2
  1. 1.Zoology DepartmentDuke UniversityDurhamUSA
  2. 2.Department of Biological SciencesFlorida International UniversityMiamiUSA

Personalised recommendations