Vibratory communication in spiders: Adaptation and compromise at many levels

  • F. G. Barth
Part of the EXS book series (EXS, volume 84)


Spiders are an exquisite choice of experimental animals for anyone interested in the vibrational sense and vibratory communication. For the vast majority of spiders, vibrations represent signals of overwhelming behavioral significance. The vibratory world spiders live in can only be adequately appreciated if we consider it in a broad biological context. Only then both the richness in adaptations and the diversity of selective pressures which must have been at work during evolution become apparent.

Taking the courtship behavior of Cupiennius salei (Ctenidae) and some of its close relatives as a representative example, this chapter illustrates some of these aspects at different levels of organization. C. salei is a large Central American wandering spider living on monocotyle-donous plants. These plants (rather than a web) serve as transmission channels for its vibratory courtship signals. Roughly following a bottom-up approach, the vibration receptors, the vibratory signals, the neural responses to vibrations, species recognition and reproductive isolation, are related to each other. Apart from providing a sketch of the biological “design” of vibratory communication, the present chapter strives to emphasize the virtues of an organismic approach, blending reductionist experiments in the lab with observations in the field.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcock, J. (1989) Animal Behavior. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  2. Anton, S. and Barth, F.G. (1993) Central nervous projection patterns of trichobothria and other cuticular sensilla in the wandering spider Cupiennius salei (Arachnida, Araneae). Zoo-morphology 113:21–32.Google Scholar
  3. Babu, K.S. and Barth, F.G. (1989) Central nervous projections of mechanoreceptors in the spider Cupiennius salei KEYS. Cell Tissue Res. 258:69–82.CrossRefGoogle Scholar
  4. Barth, EG. (ed.) (1985a) Neurobiology of Arachnids. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo.CrossRefGoogle Scholar
  5. Barth, F.G. (1985b) Neuroethology of the spider vibration sense. In: F.G. Barth (ed.):Neurobiology of Arachnids. Springer-Verlag, Berlin, pp 203–229.CrossRefGoogle Scholar
  6. Barth, F.G. (1985c) Slit sensilla and the measurement of cuticular strains. In. EG. Barth (ed.):Neurobiology of Arachnids. Springer-Verlag, Berlin, pp 162–188.CrossRefGoogle Scholar
  7. Barth, F.G. (1986) Vibrationssinn und vibratorische Umwelt von Spinnen. Naturwiss. 73(9):519–530.CrossRefGoogle Scholar
  8. Barth, F.G. (1993) Sensory guidance in spider pre-copulatory behavior. Comp. Biochem. Physiol. 104A:717–733.CrossRefGoogle Scholar
  9. Barth, F.G. (1994) Courtship and vibratory comunication in the spider Cupiennius salei Keys. (Ctenidae). Commentary on film C 2318 of the Austrian Institute for the Scientific Film. Wiss. Film 45/46:71–76.Google Scholar
  10. Barth, F.G. (1997) The vibrational sense of spiders. In: R.R. Hoy, A.N. Popper and R.R. Fay (eds):Comparative Hearing:Insects. Springer Handbook of Auditory Research. Springer-Verlag New York; in press.Google Scholar
  11. Barth, F.G., and Blickhan, R. (1984) Mechanoreception. In. J. Bereiter-Hahn, A.G. Matoltsy, and R. Richards (eds):Biology of the Integument. Springer-Verlag, Berlin, pp 554–582.CrossRefGoogle Scholar
  12. Barth, F.G. and Cordes, D. (1997) Cupiennius remedius new species (Araneae, Ctenidae), and a key for the genus. J. Arachnol.; in press.Google Scholar
  13. Barth, F.G. and Geethabali (1982) Spider vibration receptors. Threshold curves of individual slits in the metatarsal lyriform organ. J. Comp. Physiol.A 148:175–185.CrossRefGoogle Scholar
  14. Barth, F.G. and Libéra, W. (1970) Ein Atlas der Spaltsinnesorgane von Cupiennius salei Keys., Chelicerata (Araneae). Z Morph. Tiere 68:343–369.CrossRefGoogle Scholar
  15. Barth, F.G. and Schmitt, A. (1991) Species recognition and species isolation in wandering spiders (Cupiennius spp., Ctenidae). Behav. Ecol. Sociobiol. 29:333–339.CrossRefGoogle Scholar
  16. Barth, F.G. and Seyfarth, E.-A. (1979) Cupiennius salei Keys (Araneae) in the highlands of central Guatemala. J. Arachnol. 7:255–263.Google Scholar
  17. Barth, F.G., Ficker, E. and Federle, H.-U. (1984) Model studies on the mechanical significance of grouping in compound spider slit sensilla. Zoomorphology 104:204–215.CrossRefGoogle Scholar
  18. Barth, F.G., Seyfarth, E.-A., Bleckmann, H. and Schüch, W. (1988a) Spiders of the genus Cupiennius SIMON 1891 (Araneae, Ctenidae). I. Range distribution, dwelling plants, and climatic characteristics of the habitats. Oecologia 11:187–193.CrossRefGoogle Scholar
  19. Barth, EG., Bleckmann, H., Bohnenberger, J. and Seyfarth, E.-A. (1988b) Spiders of the genus Cupiennius SIMON 1891 (Araneae, Ctenidae). II. On the vibratory environment of a ering spider. Oecologia 11:194–201.CrossRefGoogle Scholar
  20. Barth, EG., Wastl, U., Humphrey, J.A.C. and Devarakonda, R. (1993) Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria (Cupiennius salei KEYS.). Phil. Trans. R. Soc. Lond. B 340:445–461.CrossRefGoogle Scholar
  21. Barth, F.G., Humphrey, J.A.C., Wastl, U. Halbritter, J. and Brittinger, W. (1995) Dynamics of arthropod filiform hairs. III. Flow patterns related to air movement detection in a spider (Cupiennius salei KEYS.). Phil. Trans. R. Soc. Lond. B 347:397–412.CrossRefGoogle Scholar
  22. Baurecht, D. and Barth, F.G. (1992) Vibratory communication in spiders. I. Representation of male courtship signals by female vibration receptor.J. Comp. Physiol. A 171:231–243.CrossRefGoogle Scholar
  23. Baurecht, D. and Barth, F.G. (1993) Vibratory communication in spiders. II. Representation of parameters contained in synthetic male courtship signals by female vibration receptor. J. Comp. Physiol. A 173:309–319.CrossRefGoogle Scholar
  24. Bleckmann, H. and Barth, F.G. (1984) Sensory ecology of a semiaquatic spider (Dolomedes triton). II. The release of predatory behavior by water surface waves. Behav. Ecol. Sociobiol. 14:303–312.CrossRefGoogle Scholar
  25. Blickhan, R. and Barth, F.G. (1985) Strains in the exoskeleton of spiders. J. Comp. Physiol. A 157:115–147.CrossRefGoogle Scholar
  26. Brescovit, A.D. and von Eickstedt, V.R.D. (1995) Occurrência de Cupiennius Simon na América do Sul e rediscriçào de Cupiennius celerrimus Simon (Araneae, Ctenidae). Revta. bras. Zool. 12(3):641–646.CrossRefGoogle Scholar
  27. Bristowe, W.S. (1958) The World of Spiders. Collins, London.Google Scholar
  28. Dierkes, S. and Barth, F.G. (1995) Mechanism of signal production in the vibratory communication of the wandering spider Cupiennius getazi (Arachnida, Araneae). J. Comp. Physiol. A 176:31–44.CrossRefGoogle Scholar
  29. Eberhard, W.G. (1985) Sexual Selection and Animal Genitalia. Harvard Univ. Press, Cambridge.Google Scholar
  30. Felber, R. (1996) The phylogenetic relationships of spiders in the genus Cupiennius deduced from mitochondrial DNA Sequences. Diploma Thesis, University of Vienna.Google Scholar
  31. Friedel, T. and Barth, F.G. (1995) Responses of female interneurons to male courtship vibrations in a spider (Cupiennius salei Keys., Ctenidae). J. Comp. Physiol. A 177:159–171.CrossRefGoogle Scholar
  32. Hergenröder, R. and Barth, F.G. (1983) Vibratory signals and spider behavior:How do the sensory inputs from the eight legs interact in orientation? J. Comp. Physiol. A 152:361–371.CrossRefGoogle Scholar
  33. Huber, K.C., Haider, T.H.S., Müller, M.W. Huber, B.A., Schweyen, R.J. and Barth, F.G. (1993) DNA-sequence data indicates the polyphyly of the family Ctenidae (Araneae). J Arachnol. 21:194–201.Google Scholar
  34. Kirchner, W. (1964) Bisher Bekanntes über die forstliche Bedeutung der Spinnen. Waldhygiene 5(6/7):161–198.Google Scholar
  35. Kirchner, W.H. (1994) Hearing in honeybees:the mechanical response of the bee’s antenna to near field sound. J. Comp. Physiol. A 175:261–265.CrossRefGoogle Scholar
  36. Lachmuth, U, Grasshoff, M. and Barth, F.G. (1984) Taxonomische Revision der Gattung Cupiennius SIMON 1891 (Arachnida; Araneae). Senckenbergiana biol. 65:329–372.Google Scholar
  37. Liesenfeld, F.J. (1961) Über Leistung und Sitz des Erschütterungssinnes von Netzspinnen. Biol. ZW. 80:465–475.Google Scholar
  38. Michelsen, A., Towne, W.F., Kirchner, W.H. and Kryger, P. (1987) The acoustic near field of a dancing honeybee. J. Comp. Physiol. A 161:633–643.CrossRefGoogle Scholar
  39. Reiβland, A. and Görner, P. (1985) Trichobothria. In: EG. Barth (ed.):Neurobiology of Arachnids. Springer-Verlag, Berlin, pp 138–161.CrossRefGoogle Scholar
  40. Rovner, J.S. and Barth, G.G. (1981) Vibratory communication through living plants by a tropical wandering spider. Science 214:464–466.PubMedCrossRefGoogle Scholar
  41. Schmitt, A., Schuster, M. and Barth, EG. (1990) Daily locomotor activity patterns in three species of Cupiennius (Araneae:Ctenidae):The males are the wandering spiders. J. Arach-nol. 18,3:249–255.Google Scholar
  42. Schmitt, A., Schuster, M. and Barth, F.G. (1992) Male competition in a wandering spider (Cupiennius getazi, Ctenidae). Ethology 90:293–306.CrossRefGoogle Scholar
  43. Schmitt, A., Friedel, T. and Barth, F.G. (1993). Importance of pause between spider courtship vibrations and general problems using synthetic stimuli in behavioral studies. J. Comp. Physiol. A 172:707–714.CrossRefGoogle Scholar
  44. Schmitt, A., Schuster, M. and Barth, F.G. (1994) Vibratory communication in a wandering spider (Cupiennius getazi, Ctenidae):Female and male preferences of various features of the conspecific male’s releaser. Anim. Beh. 48:1155–1171.CrossRefGoogle Scholar
  45. Schüch, W. and Barth, F.G. (1985) Temporal patterns in the vibratory courtship signals of the wandering spider Cupiennius salei KEYS. Behav. Ecol. Sociobiol. 16:263–271.CrossRefGoogle Scholar
  46. Schüich, W. and Barth, F.G. (1990) Vibratory communication in a spider:female responses to synthetic male vibrations. J. Comp. Physiol. A 166:817–826.Google Scholar
  47. Schuster, M., Baurecht, D., Mitter, E., Schmitt, A. and Barth, F.G. (1994) Field observations on the population structure of three ctenid spiders (Cupiennius specc, Araneae). J. Arachnol. 22:32–38.Google Scholar
  48. Seyfarth, E.-A. (1980) Daily patterns of locomotor activity in a wandering spider. Physiol. Entomol. 5:199–206.CrossRefGoogle Scholar
  49. Shimizu, I. and Barth, F.G. (1996) The effect of temperature on the temporal structure of the vibratory courtship signal of a spider (Cupiennius salei Keys.). J. Comp. Physiol. A 179:363–370.CrossRefGoogle Scholar
  50. Speck-Hergenröder, J. and Barth, EG. (1987) Tuning of vibration sensitive neurons in the central nervous system of a wandering spider, Cupiennius salei Keys. J. Comp. Physiol. A 160:467–475.CrossRefGoogle Scholar
  51. Thornhill, R. (1979) Male and female sexual selection and the evolution of mating strategies in insects.In:M.S. Blum and N. A. Blum(eds):Sexual Selection and Reproductive Competition in Insects. Academic Press, London, pp 81–121.Google Scholar
  52. Trivers, R.L. (1972) Parental investment and sexual selection. In. B. Campbell (ed.):Sexual Selection and the Descent of Man, 1871:1971. Aldine, Chicago, pp 136–179.Google Scholar
  53. Wirth, E. (1984) Die Bedeutung von Zeit-und Amplitudenunterschieden für die Orientierung nach vibratorischen Signalen bei Spinnen. Diploma Thesis, J.W. Goethe-Universität, Frankfurt am Main.Google Scholar

Copyright information

© Springer Basel AG 1997

Authors and Affiliations

  • F. G. Barth
    • 1
  1. 1.Biozentrum, Institut für ZoologieUniversität WienWienAustria

Personalised recommendations