Advertisement

The ant’s celestial compass system: spectral and polarization channels

  • R. Wehner
Chapter
Part of the EXS book series (EXS, volume 84)

Summary

Ants as well as bees derive compass information not only from the direct light of the sun, but also from the scattered light in the sky. In the present account, the latter phenomenon is described for desert ants, genus Cataglyphis. Due to the scattering of sunlight by the air molecules of the earth’s atmosphere, spatial gradients of polarization, spectral composition and radiant intensity extend across the celestial hemisphere. All of these optical phenomena are exploited by the Cataglyphis navigator. Here I concentrate on the use Cataglyphis makes of the polarization and spectral skylight gradients. Either type of information is neurally processed by a separate sensory channel receiving its input from a separate part of the retina. These channels are characterized and their possible interactions are analyzed in a variety of behavioural experiments, in which ants, whose compound eyes are partially occluded by light-tight caps, are presented with spatially restricted and spectrally altered parts of the celestial hemisphere. It is discussed whether skylight patterns are used by the insect navigator simply to read a reference direction (e.g., the azimuthal position of the solar meridian) from the sky, or whether they are used to determine any particular point of the compass. Different approaches to examine these questions - behavioural and neuro-physiological analyses, computer simulations and robotics - are described, and results obtained by these approaches are reported. New ways of portraying the pattern of polarized light in the real sky are presented in Figures 2 (lower part) and 3, and Figure 22 introduces an autonomous agent navigating by polarized skylight. Conceptually, the last paragraph of this chapter provides my most general conclusions drawn from the analyses of the insect’s skylight compass.

Keywords

Polarization Channel Training Direction Azimuthal Position Phototactic Response Spectral Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arago, D.F.J. (1811) Mémoire sur une modification remarquable qu’éprouvent les rayons lumineux dans leurs passage à travers certains corps diaphanes, et sur quelques autres nouveaux phénomènes d’optique. Mém. Cl. Sci. Math. Phys. 1:93–134.Google Scholar
  2. Batschelet, E. (1965) Statistical methods for the analysis of problems in animal orientation and certain biological rhythms. Am. Inst. Biol. Sciences, Washington, D.C.Google Scholar
  3. Batschelet, E. (1981) Circular Statistics in Biology. Academic Press, London, New York.Google Scholar
  4. Benhamou, S., Sauve, J.P. and Bovet, P. (1990) Spatial memory in large scale movements:efficiency and limitation of the egocentric coding process. J. Theor. Biol. 145:1–12.CrossRefGoogle Scholar
  5. Bernard, G.D. and Wehner, R. (1977) Functional similarities between polarization vision and color vision. Vision Res. 17:1019–1028.PubMedCrossRefGoogle Scholar
  6. Boehm, G. (1940) Über maculare (Haidinger’sche) Polarisationsbüschel und über einen polarisationsoptischen Fehler des Auges. Acta Ophthalmol. 18:109–142.Google Scholar
  7. Brines, M.L. and Gould, J.L. (1979). Bees have rules. Science 102:571–573.CrossRefGoogle Scholar
  8. Brines, M.L. and Gould, J.L. (1982) Skylight polarization patterns and animal orientation. J.Exp.Biol. 96:69–91.Google Scholar
  9. Clarke, D. and Graininger, J.F. (1971) Polarized Light and Optical Measurement. Pergamon Press, Oxford, New York.Google Scholar
  10. Duelli, P. (1975) A fovea for E-vector orientation in the eye of Cataglyphis bicolor (Formicidae, Hymenoptera). J. Comp. Physiol. 102:43–56.CrossRefGoogle Scholar
  11. Duelli, P. and Wehner, R. (1973) The spectral sensitivity of polarized light orientation in Cataglyphis bicolor (Formicidae, Hymenoptera). J. Comp. Physiol. 86:37–53.CrossRefGoogle Scholar
  12. Edrich, W. and Heiversen, O. v. (1987) Polarized light orientation in honey bees:is time a component in sampling? Biol. Cybern. 56:89–96.CrossRefGoogle Scholar
  13. Edrich, W., Neumeyer, C. and Heiversen, O. v. (1979)“Anti-sun”orientation of bees with regard to a field of ultraviolet light. J. Comp. Physiol. 134:151–157.CrossRefGoogle Scholar
  14. Fent, K. (1985) Himmelsorientierung bei der Wüstenameise Cataglyphis bicolor:Bedeutung von Komplexaugen und Ocellen. Ph.D. Thesis, Zürich.Google Scholar
  15. Fent, K. (1986) Polarized skylight orientation in the desert ant Cataglyphis. J. Comp. Physiol. A 158:145–150.CrossRefGoogle Scholar
  16. Fent, K. and Wehner, R. (1985) Ocelli:a celestial compass in the desert and Cataglyphis. Science 228:192–194.PubMedCrossRefGoogle Scholar
  17. Frisch, K.v. (1949) Die Polarisation des Himmelslichts als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148.PubMedCrossRefGoogle Scholar
  18. Frisch, K.v. (1967) The Dance Language and Orientation of Bees. Harvard University Press, Cambridge, MA.Google Scholar
  19. Haidinger, W. (1844) Über das direkte Erkennen des polarisierten Lichts und der Lage der Polarisationsebene. Ann. Phys., Leipzig 63:29–39.CrossRefGoogle Scholar
  20. Hartline, P., Kass, L. and Loop, M.S. (1978) Merging of modalities in the optic tectum:infrared and visual integration in rattlesnakes. Science 199:1225–1229.PubMedCrossRefGoogle Scholar
  21. Heiversen, O.v. and Edrich, W. (1974) Der Polarisationsempfänger im Bienenauge:ein Ultra-violetrezeptor. J. Comp. Physiol. 94:33–47.CrossRefGoogle Scholar
  22. Homberg, U., Müller, M. and Vitzthum, H. (1996) The central complex:evidence for a role in polarized-light orientation. Proc. Int. Congr. Entomol. 20:204.Google Scholar
  23. Horvàth, G. and Varju, D. (1997) Polarization pattern of freshwater habitats recorded by video polarimetry in red, green and blue spectral ranges and its relevance for water detection by aquatic insects. J. Exp. Biol. 200:1155–1163.Google Scholar
  24. Kirschfeld, K. (1972) Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes. Z. Naturforsch. 27c:578–579.Google Scholar
  25. Knudsen, E.I. and Konishi, M. (1978) A neural map of auditory space in the owl. Science 200:795–797.PubMedCrossRefGoogle Scholar
  26. Konishi, M. (1986) Centrally synthesized maps of sensory space. Trends Neurosci. 9:163–168.CrossRefGoogle Scholar
  27. Konishi, M, Takahashi, T.T., Wagner, H., Sullivan, W.E. and Carr, C.E. (1988) Neurophysio-logical and anatomical substrates of sound localization in the owl. In: G.M. Edelmann, W.E. Gall and W.M. Gowman (eds):Auditory Function. J. Wiley and Sons, New York, pp 721–745.Google Scholar
  28. Labhart, T. (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant, Cataglyphis bicolor. J. Comp. Physiol. A 158:1–7.CrossRefGoogle Scholar
  29. Labhart, T. (1988) Polarization-opponent interneurons in the insect visual system. Nature 331:435–437.CrossRefGoogle Scholar
  30. Labhart, T. (1996) An opto-electronic model of a polarization-sensitive insect interneuron. Proc. Neurobiol. Conf. Göttingen 24:356.Google Scholar
  31. Lambrinos, D., Maris, M., Kobayashi, H., Labhart, T., Pfeifer, R. and Wehner, R. (1997) An autonomous agent navigating with a polarized light compass. Adapt. Behav. 6:175–206.CrossRefGoogle Scholar
  32. Lanfranconi, B. (1982) Kompassorientierung nach dem rotierenden Himmelsmuster bei der Wüstenameise Cataglyphis bicolor. Ph.D. Thesis, Zürich.Google Scholar
  33. Malus, E. (1809) Sur une propriété de la lumière réfléchie par les corps diaphanes. Bull. Sci. Soc.Philom. 1:266–269.Google Scholar
  34. Menzel, R. (1979) Spectral sensitivity and color vision in invertebrates. In. H. Autrum (ed):Handbook of Sensory Physiology, Vol. VII/6A. Springer-Verlag, Berlin, Heidelberg, New York, pp 503–580.Google Scholar
  35. Mote, M. and Wehner, R. (1980) Functional characteristics of photoreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. J. Comp. Physiol. 137:63–71.CrossRefGoogle Scholar
  36. Murphey, R.K. (1983) Maps in the insect nervous system, their implications for synaptic connectivity and target location in the real world. In: F. Huber and H. Markl (eds):Neuro-ethology and Behavioral Physiology. Springer-Verlag, Berlin, Heidelberg, New York, pp 176–188.Google Scholar
  37. Oldfield, B.P. (1988) Tonotopic organization of the insect auditory pathway. Trends Neurosci. 11:267–270.PubMedCrossRefGoogle Scholar
  38. Petzold, J. and Labhart, T. (1994) Modelling polarization-opponent interneurons of insects:responses to the polarization patterns in the sky. Proc. Neurobiol. Conf. Göttingen 22:466.Google Scholar
  39. Petzold, J., Helbling, H. and Labhart, T. (1995) Anatomy and physiology of four new types of polarization sensitive interneuron in the cricket, Gryllus campestris. Proc. Neurobiol. Conf. Göttingen 23:415.Google Scholar
  40. Räber, F. (1979) Retinatopographie und Sehfeldtopologie des Komplexauges von Cataglyphis bicolor (Formicidae, Hymenoptera) und einiger verwandter Formiciden-Arten. Ph.D. Thesis, Zürich.Google Scholar
  41. Ramskou, T. (1969) Solstenen. Primitiv Navigation I Norden for Kompasset. Rhodos, Koben-havn.Google Scholar
  42. Römer, H. and Rheinländer, J. (1989) Hearing in insects and its adaptation to environmental constraints. In: H.C. Lüttgau und R. Necker (eds):Biological Signal Processing. VCH Verlagsgesellschaft, Weinheim, pp 146–162.Google Scholar
  43. Rossel, S. (1993) Navigation by bees using polarized skylight. Comp. Biochem. Physiol. A 104:695–708.CrossRefGoogle Scholar
  44. Rossel, S. and Wehner, R. (1982) The bee’s map of the e-vector pattern in the sky. Proc. Natl. Acad. Sci. USA 79:4451–4455.PubMedCrossRefGoogle Scholar
  45. Rossel, S. and Wehner, R. (1984a) How bees analyse the polarization patterns in the sky. Experiments and model. J. Comp. Physiol. A 154:607–615.CrossRefGoogle Scholar
  46. Rossel, S. and Wehner, R. (1984b) Celestial orientation in bees:the use of spectral cues. J. Comp. Physiol A 155:605–613.CrossRefGoogle Scholar
  47. Santschi, F. (1911) Observations et remarques critiques sur le mécanisme de l’orientation chez les fourmis. Rév. Suisse Zool. 19:305–338.Google Scholar
  48. Santschi, F. (1923) L’orientation sidérale des fourmis, et quelques considérations sur leurs différentes possibilités d’orientation. Mèm. Soc. Vaudoise Sci. Nat. 4:137–175.Google Scholar
  49. Seyfarth, E.A. and Barth, F. (1972) Compound slit sense organs on the spider leg:mechano-receptors involved in kinesthetic orientation. J. Comp. Physiol. 78:176–191.CrossRefGoogle Scholar
  50. Sparks, D.L. (1988) Neural cartography:sensory and motor maps in the superior colliculus. Brain Behav. Evol. 31:49–56.PubMedCrossRefGoogle Scholar
  51. Stockhammer, K. (1959) Die Orientierung nach Schwingungsrichtung linear polarisierten Lichtes und ihre sinnesphysiologischen Grundlagen. Erg. Biol. 21:34–56.Google Scholar
  52. Strutt, J.W. (1871) On the light from the sky, its polarization and colour. Phil. Mag. 41:107–120, 274-279.Google Scholar
  53. Suga, N. (1990) Cortical computational maps for auditory imaging. Neural Networks 3:3–21.CrossRefGoogle Scholar
  54. Waterman, T.H. (1981) Polarization sensitivity. In: H. Autrum (ed.):Handbook of Sensory Physiology, Vol. VII/6B. Springer-Verlag, Berlin, Heidelberg, New York, pp 281–469.Google Scholar
  55. Wehner, R. (1975) Space constancy of the visual world in insects. Fortschr. Zool. 23:148–160.PubMedGoogle Scholar
  56. Wehner, R. (1982) Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neu-jahrsbl. Naturforsch. Ges. Zürich 184:1–132.Google Scholar
  57. Wehner, R. (1983) Celestial and terrestrial navigation:human strategies-insect strategies. In: F. Huber and H. Markl (eds):Neuroethology and Behavioural Physiology. Springer-Verlag, Berlin, Heidelberg, New York, pp 366–381.CrossRefGoogle Scholar
  58. Wehner, R. (1991) Visuelle Navigation:Kleinstgehirn-Strategie. Verh. Dtsch. Zool. Ges. 84:89–104.Google Scholar
  59. Wehner, R. (1994a) The polarization-vision project:championing organismic biology. Fortschr. Zool. 39:103–143.Google Scholar
  60. Wehner, R. (1994b) Himmelsbild und Kompassauge—Neurobiologie eines Navigationssystems. Verh. Dtsch. Zool. Ges. 87:9–37.Google Scholar
  61. Wehner, R. (1996) Polarisationsmusteranalyse bei Insekten. Nova Acta Leopoldina NF 72:159–183.Google Scholar
  62. Wehner, R. and Rossel, S. (1985) The bee’s celestial compass—a case study in behavioural neurobiology. Fortschr. Zool. 31:11–53.Google Scholar
  63. Wehner, R. and Strasser, S. (1985) The POL area of the honey bee’s eye:behavioural evidence. Physiol. Entomol. 10:337–349.CrossRefGoogle Scholar
  64. Zeki, S. (1993) The representation of colours in the cerebral cortex. Nature 284:412–418.CrossRefGoogle Scholar
  65. Zollikofer, C.P.E., Wehner, R. and Fukushi, T. (1995) Optical scaling in conspecific Cataglyphis ants. J. Exp. Biol. 198:1637–1646.PubMedGoogle Scholar

Copyright information

© Springer Basel AG 1997

Authors and Affiliations

  • R. Wehner
    • 1
  1. 1.Department of ZoologyUniversity of ZürichZürichSwitzerland

Personalised recommendations