Advertisement

Course control and tracking: Orientation through image stabilization

  • K. Kirschfeld
Chapter
Part of the EXS book series (EXS, volume 84)

Summary

Course control and tracking are based on visual detection of the position and movement of objects. A disadvantage of biological movement detectors is that they cannot provide a signal proportional to the speed at which the image of an object moves over the retina. Other image parameters, such as brightness, contrast, and texture, strongly affect the magnitude of the detectors’ output signals. To function well, the optomotor control circuit must solve these problems. One possible solution, realized in Diptera, is the principle of “gain control by feedback oscillations” described in this chapter.

The optomotor system serves for course control by stabilizing the image of the visual panorama on the eye, and for tracking a moving object by stabilizing the object’s image on the eye. When an object moves in front of a structured background, it is impossible for the images of both object and background to be stabilized simultaneously. Arthropods and vertebrates usually employ the same strategy to cope with this problem: saccadic tracking. In Diptera, the neural substrate for saccadic tracking is partially understood.

Keywords

Angular Velocity Smooth Pursuit Automatic Gain Control Input Element Image Stabilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bilo, D. (1992) Optocollic reflexes and neck flexion-related activity of flight control muscles in the airflow-stimulated pigeon. In: A. Berthoz, W. Graf and P. Vidal (eds):The Head-Neck Sensory-Motor System. Oxford University Press, New York, Oxford, pp. 96–100.CrossRefGoogle Scholar
  2. Borst, A. and Egelhaaf, M. (1987) Temporal modulation of luminance adapts time constant of fly movement detectors. Biol. Cybern. 56:209–215.CrossRefGoogle Scholar
  3. Borst, A. and Egelhaaf, M. (1992) In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. Proc. Natl. Acad. Sei. USA 89:4139–4143.CrossRefGoogle Scholar
  4. Briggs, B.H., Phillips, G.J. and Shinn, D.H. (1950) The analysis of observations on spaced receivers of the fading of radio signals. Proc. Phys. Soc. 63:106–121.CrossRefGoogle Scholar
  5. Buchner, E. (1984) Behavioural analysis of spatial vision in insects. In: M.A. Ali (ed.):Photo-reception and Vision in Invertebrates. Plenum Press, New York, London, pp 561–621.CrossRefGoogle Scholar
  6. Collett, T.S., Nalbach, H.O. and Wagner, H. (1993) Visual stabilization in arthropods. In: F.A. Miles and J. Wallman (eds):Visual Motion and its Role in the Stabilization of Gaze. Elsevier Science Publishers B.V., Amsterdam, pp 239–264.Google Scholar
  7. David, C.T. (1982) Compensation for height in the control of groundspeed by Drosophila in a new,“Barber’s Pole”wind tunnel. J. Comp. Physiol. 147:485–493.CrossRefGoogle Scholar
  8. Eckert, H. and Hamdorf, K. (1981) The contrast frequency dependence:A criterion for judging the non-participation of neurones in the control of behavioural responses. J. Comp. Physiol. 145:241–247.CrossRefGoogle Scholar
  9. Egelhaaf, M. (1985) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-cells. Biol. Cybern. 52:267–280.CrossRefGoogle Scholar
  10. Egelhaaf, M. (1990) Spatial interactions in the fly visual system leading to selectivity for small-field motion. Naturwissens. 77:182–185.CrossRefGoogle Scholar
  11. Egelhaaf, M. and Borst, A. (1989) Transient and steady-state response properties of movement detectors. J. Opt. Soc. Am. A 6:116–127.CrossRefGoogle Scholar
  12. Egelhaaf, M. and Borst, A. (1993) Motion computation and visual orientation in flies. Comp. Biochem. Physiol. 104A:659–673.CrossRefGoogle Scholar
  13. Egelhaaf, M., Hausen, K., Reichardt, W. and Wehrhahn, C. (1988) Visual course control in flies relies on neuronal computation of object and background motion. TINS 8:351–358.Google Scholar
  14. Egelhaaf, M., Borst, A. and Reichardt, W. (1989) Computational structure of a biological motion detection system as revealed by local detector analysis in the fly’s nervous system. J. Opt. Soc. Am. A 6:1070–1087.CrossRefGoogle Scholar
  15. Götz, K.G. (1964) Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2:77–92.PubMedCrossRefGoogle Scholar
  16. Graaf, B., de, Wertheim, A.H., Bles, W. and Kremers, J. (1990) Angular velocity, not temporal frequency, determines circular vection. Vision Res. 30:637–646.PubMedCrossRefGoogle Scholar
  17. Hassenstein, B. und Reichardt, W. (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen-und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Clorophanus. Z.Naturf. llb:513–524.Google Scholar
  18. Hausen, K. (1984) The lobula-complex of the fly:structure, function and significance in visual behaviour. In: M.A. Ali (ed.):Photoreception and Vision in Invertebrates. Plenum Press, New York, pp 523–559.CrossRefGoogle Scholar
  19. Hausen, K. and Wehrhahn, C. (1990) Neural circuits mediating visual flight control in flies. II. Separation of two control systems by microsurgical brain lesions. J. Neurosci. 10:351–360.PubMedGoogle Scholar
  20. Heisenberg, M. and Wolf, R. (1984) Vision in Drosophila. Springer-Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  21. I1g, U.J., Brenner, F., Thiele, A. and Hoffmann, K.P. (1992) Neuronal coding of retinal slip during smooth pursuit eye movements. Eur. J. Neurosci. (Suppl.) 5:253.Google Scholar
  22. Kelly, D.H. (1979) Motion and vision. II. Stabilized spatio-temporal threshold surface. J. Opt. Soc. Am. 69:1340–1349.PubMedCrossRefGoogle Scholar
  23. Kirschfeld, K. (1989) Automatic gain control in movement detection of the fly. Naturwissens. 76:378–380.CrossRefGoogle Scholar
  24. Kirschfeld, K. (1991) An optomotor control system with automatic compensation for contrast and texture. Proc. R. Soc. Lond. B 246:261–268.CrossRefGoogle Scholar
  25. Kirschfeld, K. (1994) Tracking of small objects in front of a textured background by insects and vertebrates:phenomena and neuronal basis. Biol. Cybern. 70:407–415.PubMedCrossRefGoogle Scholar
  26. Kunze, P. (1961) Untersuchung des Bewegungssehens fixiert fliegender Bienen. Z. vergl. Physiol. 44:656–684.CrossRefGoogle Scholar
  27. Land, M. (1992) Visual tracking and pursuit:humans and arthropods compared. J. Insect Physiol. 38:939–951.CrossRefGoogle Scholar
  28. Lehrer, M. and Srinivasan, M.V. (1992) Freely flying bees discriminate between stationary and moving objects:Performance and possible mechanisms. J. Comp. Physiol. A 171:457–467.CrossRefGoogle Scholar
  29. Metzger, W. (1975) Gesetze des Sehens. Waldemar Kramer Verlag, Frankfurt/M.Google Scholar
  30. Miles, F.A. and Kawano, K. (1987) Visual stabilization of the eyes. Trends Neurosci. 10:153–158.Google Scholar
  31. Radl, E. (1903) Untersuchungen über den Phototropismus der Tiere. W. Engelmann, Leipzig.Google Scholar
  32. Reichardt, W. and Poggio, T. (1979) Figure-ground discrimination by the relative movement in the visual system of the fly. (Part I:Experimental results). Biol. Cybern. 35:81–100.CrossRefGoogle Scholar
  33. Reichardt, W. and Varjú, D. (1959) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen (Folgerungen aus Experimenten an dem Rüsselkäfer Chlorophanus viridis). Z. Naturf. 14b:674–689.Google Scholar
  34. Reichardt, W., Poggio, T. and Hausen, K. (1983) Figure-ground discrimination by relative movement in the visual system of the fly. (Part II:Towards the neural circuitry). Biol. Cybern. (Suppl.)46:l-30.Google Scholar
  35. Rossel, S. (1980) Foveal fixation and tracking in the praying mantis. J. Comp. Physiol. 139:307–331.CrossRefGoogle Scholar
  36. Ruyter van Steveninck, R.R., de, Zaagman, W.H. and Mastebroek, H.A.K. (1986) Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly Calliphora erythrocephala. Biol. Cyern. 53:451–463.Google Scholar
  37. Sandeman, D.C. (1978) Eye-scanning during walking in the crab. J. Comp. Physiol. 124:249–257.CrossRefGoogle Scholar
  38. Schaerer, S., Feiler, R. and Kirschfeld, K. (1996) Object perception in goldfish. Proc. 24th Göttingen Neurobiology Conf, Vol. II. Thieme-Verlag, Stuttgart, New York, p 386.Google Scholar
  39. Srinivasan, M.V, Lehrer, M., Kirchner, W.H. and Zhang, S. W. (1991) Range perception through apparent image speed in freely flying honeybees. Vis Neurosci. 6:519–535.PubMedCrossRefGoogle Scholar
  40. Türke, W. (1996) Die Eigenschaften der Eingangselemente des akzessorisch optischen Systems der Taube (Columba livia). PhD Thesis, Universität Tübingen.Google Scholar
  41. Varjü, D (1959) Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster (Anwendung der Systemtheorie auf Experimente am Rüsselkäfer Chlorophanus viridis). Z. Naturf. 14b:724–735.Google Scholar
  42. Varjü, D. and Reichardt, W. (1967) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen II (Folgerungen aus Experimenten an dem Rüsselkäfer Chlorophanus viridis). Z. Naturf. 22b, 12:1343–1351.Google Scholar
  43. Wagner, H. (1986) Flight performance and visual control of flight of the freeflying housefly (Musca domestica L.) III. Interactions between angular movement induced by wide-and smallfield stimuli. Phil. Trans. R. Soc. Lond. (Biol) 312:581–595.CrossRefGoogle Scholar
  44. Wehrhahn, C. (1985) Visual guidance of flies during flight. In: G.A. Kerkut and L.I. Gilbert (eds):Comprehensive Insect Physiology Biochemistry and Pharmacology. Pergamon Press, Oxford, New York, pp 673–684.Google Scholar
  45. Wolf, R. and Heisenberg, M. (1990) Visual control of straight flight in Drosophila melano-gaster. J. Comp. Physiol. A 167:269–283.CrossRefGoogle Scholar
  46. Wolf-Oberhollenzer, F. and Kirschfeld, K. (1994) Motion sensitivity in the nucleus of the basal optic root of the pigeon. J. Neurophysiol. 71:1559–1573.PubMedGoogle Scholar

Copyright information

© Springer Basel AG 1997

Authors and Affiliations

  • K. Kirschfeld
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany

Personalised recommendations