Advertisement

Protein sorting and vesicular traffic in the Golgi apparatus

  • M. G. Farquhar
  • H.-P. Hauri
Chapter
Part of the Molecular and Cell Biology Updates book series (MCBU)

Summary

During the last ten to 15 years there has been an explosion of new information on mechanisms of protein sorting and vesicular traffic along the exocytic pathway, that has allowed us to extend and modify earlier models. We now know that newly synthesized proteins translocated to the endoplasmatic reticulum (ER) are not automatically transported to the Golgi stack. They must pass through an elaborate ER quality control system which assures that they are properly folded and assembled before leaving the ER. We also have learned that resident ER proteins are normally retained in the ER by mechanisms that are still poorly understood, but if they happen to escape they are retrieved by binding to receptors located in thecis-Golgi and transported back to the ER. A new compartment, the ER to Golgi intermediate compartment (ERGIC), with distinct morphological and biochemical features, has been discovered. In mammalian cells cargo is shuttled from the ER to ERGIC via one type of vesicle (COP II-coated vesicles) and from ERGIC to thecis-Golgi network via another (presumably COP I-coated vesicles). It has long been postulated that cargo exits the ER at specific sites, the transitional ER elements, and that transport is nonselective and occurs by so-called “bulk-flow”. However, there is growing evidence that proteins are sorted for packaging into carrier vesicles rather than being transported by bulk-flow. Cargo undergoes concentration (five to ten times) at the time of exit. The mechanism by which cargo is transported through the GA fromcis totrans remains to be elucidated. According to one model it is mediated by vesicular transport. Another view is that transport my occur by cisternal progression whereby thecis-cisterna gradually matures to become the transmost cisterna. Cargo is modified in transit by Golgi-specific post-translational modifications (glycosylation, phosphorylation, sulfation, etc.), but no further concentration takes place until proteins reach thetrans cisternae and TGN. There, newly synthesized proteins are selectively packaged into at least four different containers — i.e. secretory granules, two types of constitutive secretory vesicles (apical and basolateral cognate), and clathrin-coated vesicles carrying lysosomal enzymes. The mechanisms of sorting are best understood in the case of lysosomal enzymes sorted via mannose 6-phosphate receptors. Sorting into regulated granules is believed to occur by aggregation, and sorting of at least some proteins into constitutive vesicles by tyrosine-based signals. The mechanisms by which resident Golgi proteins are retained in the Golgi stacks are still poorly understood, but there is a general consensus that important information resides in the transmembrane domain of integral membrane proteins. During the last few years information derived from the study of Golgi transportin vitro, yeastsec mutants, and synaptic vesicles has converged and demonstrated that vesicles involved in transport at different steps along the exocytic pathway have common features. Most have prominent coats of which there are several types. It is thought that vesicle budding is initiated by the assembly of the protein coat, thus triggering assembly of elaborate membrane and cytosolic protein complexes, unique for each vesicle population, that drive vesicle budding and fission. Included in the forming vesicle are cargo proteins, cargo receptors and membrane proteins required for vesicle docking. Pairs of integral vesicle and target membrane proteins (v-SNARES and t-SNARES), with specific family members assigned to different stations, assure docking to the appropriate membrane receptor. Soluble cytosolic proteins (NSF and SNAPs) serve as common fusion machinery for different vesicle relays. An exception is represented by the vesicles involved in apical delivery of proteins in polarized secretory cells where glycolipids and glycans appear to be involved. Attention is currently focused on how traffic is regulated and how signals are transduced from one cell compartment to the other. Small GTPases of the Rab and ARF families, heterotrimeric G proteins, and phosphoinositides are known to be involved, but understanding of their specific roles is still fragmentary.

Keywords

Golgi Apparatus Protein Sorting Golgi Membrane Golgi Cisterna Vesicle Docking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alb, J.G., Kearns, M.A. and Bankaitis, V.A. (1996) Phospholipid metabolism and membrane dynamics.Curr. Opin. Cell Biol. 8: 534–541.PubMedCrossRefGoogle Scholar
  2. Allan, D. and Kallen, K.J. (1993) Transport of lipids to the plasma membrane in animal cells.Prog. Lipid Res. 32: 195–219.PubMedCrossRefGoogle Scholar
  3. Anderson, R.G., Kamen, B.A., Rothberg, K.G. and Lacey, S.W. (1992) Potocytosis: sequestration and transport of small molecules by caveolae.Science 255: 410–411.PubMedCrossRefGoogle Scholar
  4. Anderson, R.G. and Pathak, R.K. (1985) Vesicles and cisternae in thetrans-Golgi apparatus of human fibroblasts are acidic compartments.Cell 40: 635–643.PubMedCrossRefGoogle Scholar
  5. Andreis, P.G., Rebuffat, P., Belloni, A.S., Neri, G., Cavallini, L., Gottardo, G., Mazzocchi, G., Coi, A., Malendowicz, L.K. and Nussdorfer, G.G. (1989) Stereological and functional investigations on isolated adrenocortical cells: zona fasciculata/reticularis cells of chronically ACTH-treated rats.Cell Tiss. Res. 258: 43–51.CrossRefGoogle Scholar
  6. Aniento, F., Feng, G., Parton, R.G. and Gruenberg, J. (1996) An endosomal b-COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes.J. Cell Biol. 133: 29–41.PubMedCrossRefGoogle Scholar
  7. Anthony, C., Cibert, C., Géraud, G., Santa-Maria, A., Maro, B., Mayau, V. and Goud, B. (1992) The small GTP-binding protein rab6p is distributed from medial-Golgi to thetrans-Golgi network as determined by a confocal microscopy approach.J. Cell Sci. 103: 785–796.Google Scholar
  8. Aridor, M. and Balch, W.E. (1996) Principles of selective transport: coat complexes hold the key.Trends Cell Biol. 6: 315–320.PubMedCrossRefGoogle Scholar
  9. Aridor, M., Bannykh, S.I., Rowe, T. and Balch, W.E. (1995) Sequential coupling between COP II and COP I vesicle coats in endoplasmic reticulum to Golgi transport.J. Cell Biol. 131: 875–893.PubMedCrossRefGoogle Scholar
  10. Austin, C.D. and Shields, D. (1996) Formation of nascent secretory vesicles from thetrans-Golgi network of endocrine cells is inhibited by tyrosine kinase and phosphatase inhibitors.J. Cell Biol. 135: 1471–1483.PubMedCrossRefGoogle Scholar
  11. Balch, W.E., McCaffery, J.M., Plutner, H. and Farquhar, M.G. (1994) Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum.Cell 76: 841–852.PubMedCrossRefGoogle Scholar
  12. Banfield, D.K., Lewis, C., Rabouille, C., Warren, G. and Pelham, H.R. (1994) Localization of SedS, a putative vesicle targeting molecule, to the cis-Golgi network involves both its transmembrane and cytoplasmic domains.J. Cell Biol. 127: 357–371.PubMedCrossRefGoogle Scholar
  13. Bankaitis, V.A., Aitken, J.R., Cleves, A.E. and Dowhan, W. (1990) An essential role for a phospholipid transfer protein in yeast Golgi function.Nature 347: 561–562.PubMedCrossRefGoogle Scholar
  14. Bannykh, S.I. and Balch, W.E. (1997) Membrane dynamics at the endoplasmic reticulum — Golgi interface.J. Cell Biol.; in press. Google Scholar
  15. Bannykh, S.I., Rowe, T. and Balch, W.E. (1996) The organization of endoplasmic reticulum export complexes.J. Cell Biol. 135: 19–35.PubMedCrossRefGoogle Scholar
  16. Barlowe, C., Orci, L., Yeung, T., Hosobuchi, M., Hamamoto, S., Salama, N., Rexach, M.F., Ravazzola, M., Amherdt, M. and Schekman, R. (1994) COP II: A membrane coat formed by sec proteins that drive vesicle budding from the endoplasmic reticulum.Cell 77: 895–907.PubMedCrossRefGoogle Scholar
  17. Barr, F.A., Leyte, A. and Huttner, W.B. (1992) Trimeric G proteins and vesicle formation.Trends Cell Biol. 2: 91–94.PubMedCrossRefGoogle Scholar
  18. Barr, F.A., Leyte, A., Mollner, S., Pfeuffer, T., Tooze, S.A. and Huttner, W.B. (1991) Trimeric G-proteins of thetrans-Golgi network are involved in the formation of constitutive secretory vesicles and immature secretory granules.FEBS Lett. 294: 239–243.PubMedCrossRefGoogle Scholar
  19. Bartles, J.R., Feracci, H.M., Stieger, B. and Hubbard, A.L. (1987) Biogenesis of the rat hepatocyte plasma membranein vivo: Comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation.J. Cell Biol. 1987: 1241–1251.CrossRefGoogle Scholar
  20. Becker, B., Bölinger, B. and Melkonian, M. (1995) Anterograde transport of algal scaler through the Golgi complex is not mediated by vesicles.Trends Cell Biol. 5: 305–307.PubMedCrossRefGoogle Scholar
  21. Beckers, C.J.M., Keller, D.S. and Balch, W.E. (1987) Semi-intact cells permeable to macromolecules: use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex.Cell 50: 523–534.PubMedCrossRefGoogle Scholar
  22. Bednarek, S.Y., Orci, L. and Schekman, R. (1996) Traffic COPs and the formation of vesicle coats.Trends Cell Biol. 6: 468–473.PubMedCrossRefGoogle Scholar
  23. Bednarek, S.Y., Ravazzola, M., Hosobuchi, M., Amherdt, M., Perrelet, A., Schekman, R. and Orci, L. (1995) COP I- and COP II-coated vesicles bud directly from the endoplasmic reticulum.Cell 83: 1183–1196.PubMedCrossRefGoogle Scholar
  24. Belden, W.J. and Barlowe, C. (1996) Erv25p, a component of COP II-coated vesicles, forms a complex wilth Emp24p that is required för efficient endoplasmic reticulum to Golgi transport.J. Biol. Chem. 271: 26939–26946.PubMedCrossRefGoogle Scholar
  25. Bennett, M.K. (1995) SNAREs and the specificity of transport vesicle targeting.Curr. Opin. Cell Biol. 7: 581–586.PubMedCrossRefGoogle Scholar
  26. Bennett, M.K. and Scheller, R.H. (1993) The molecular machinery for secretion is conserved from yeast to neurons.Proc. Natl Acad. Sci. USA 90: 2559–2563.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Bennett, M.K. and Scheller, R.H. (1994) A molecular description of synaptic vesicle membrane trafficking.Ann. Rev. Biochem. 63: 63–100.PubMedCrossRefGoogle Scholar
  28. Bergeron, J.J.M., Brenner, M.B., Thomas, D.Y. and Williams, D.B. (1994) Calnexin: a membrane-bound chaperone of the endoplasmic reticulum.Trends Cell Biol. 19: 124–128.Google Scholar
  29. Boll, W., Ohno, H., Songyang, Z., Rapoport, I., Cantley, L.C., Bonifacino, J.S. and Kirchhausen, T. (1996) Sequence requirements for the recognition of tyrosine-based endocytic signals by clathrin AP-2 complexes.EMBO J. 15: 5789–5795.PubMedCentralPubMedGoogle Scholar
  30. Bomsel, M. and Mostov, K. (1992) Role of heterotrimeric G proteins in membrane traffic.Molec. Biol. Cell 3: 1317–1328.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Bonifacino, J.S. (1996) Reversal of fortune for nascent proteins.Nature 384: 405–406.PubMedCrossRefGoogle Scholar
  32. Bosshard, H., Humphrey, J., Deignan, E., Davidson, J., Drazba, J., Yuan, L., Oorschot, V., Peters, P.J. and Bonifacino, J.S. (1994) The cytoplasmic domain mediates localization of furin to thetrans-Golgi network en route to the endosomal/lysosomal system.J. Cell Biol. 126: 1157–1172.CrossRefGoogle Scholar
  33. Bretscher, M.S. and Munro, S. (1993) Cholesterol and the Golgi apparatus.Science 261: 1280–1281.PubMedCrossRefGoogle Scholar
  34. Brown, R.M. Jr and Willison, J.H.M. (1977) In: B.R. Brinkley and K.R. Porter (eds):International Cell Biology, 1976–1977, The Rockefeller University Press, New York, pp 267–283.Google Scholar
  35. Burgess, T.L. and Kelly, R.B. (1987) Constitutive and regulated secretion of proteins.Ann. Rev. Cell Biol. 3: 243–293.PubMedCrossRefGoogle Scholar
  36. Burke, J., Pettitt, J.M., Schachter, H., Sarkar, M. and Gleeson, P.A. (1992) The transmembrane and flanking sequences of ß1,2-N-acetylglucosaminyltransferase I specify medial-Golgi localization.J. Biol. Chem. 267: 24433–24440.PubMedGoogle Scholar
  37. Chardin, P., Paris, S., Antonny, B., Robineau, S., Béraud-Dufour, S., Jackson, C.L. and Chabre, M. (1996) A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains.Nature 384: 481–484.PubMedCrossRefGoogle Scholar
  38. Chavez, R.A., Miller, S.G. and Moore, H.P. (1996) A biosynthetic regulated secretory pathway in constitutive secretory cells.J. Cell Biol. 133: 1177–1191.PubMedCrossRefGoogle Scholar
  39. Chavrier, P., Parton, R.G., Hauri, H.-P., Simons, K. and Zerial, M. (1990) Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments.Cell 62: 317–329.PubMedCrossRefGoogle Scholar
  40. Chin, D.J., Luskey, K.L., Anderson, R.G.W., Faust, J.R., Goldstein, J.L. and Brown, M.J. (1982) Appearance of crystalloid endoplasmic reticulum in compactin resistant Chinese hamster cells with a 500-fold increase in 3hydroxy-3-methylglutaryl-coenzyme A reductase.Proc. Natl Acad. Sci. USA 70: 1185–1189.CrossRefGoogle Scholar
  41. Clermont, Y., Xia, L. Rambourg, A., Turner, J.D. and Hermo, L. (1993) Transport of casein submicellles and formation of secretion granules in the Golgi apparatus of epithelial cells of the lactating mammary gland of the rat.Anatomical Record 235: 363–373.PubMedCrossRefGoogle Scholar
  42. Cole, N.B., Smith, C.L., Sciaky, N., Terasaki, M., Edidin, M. and Lippincott-Schwartz, J. (1996) Diffusional mobility of Golgi proteins in membranes of living cells.Science 273: 797–801.PubMedCrossRefGoogle Scholar
  43. Colley, K.J. (1977) Golgi localization of glycosyltransferases — more questions than answers.Glycobiology 7: 113.Google Scholar
  44. Colombo, M.I., Inglese, J., D’Souza-Schorey, C., Beron, W. and Stahl, P.D. (1995) Heterotrimeric G proteins interact with the small GTPase ARF. Possibilities for the regulation of vesicular traffic.J. Biol. Chem. 270: 24564–24571.PubMedCrossRefGoogle Scholar
  45. Colombo, M.I., Mayorga, L.S., Nishimoto, I., Ross, E.M. and Stahl, P.D. (1994) Gs regulation of endosome fusion suggests a role for signal transduction pathways in endocytosis.J. Biol. Chem. 269: 14919–14923.PubMedGoogle Scholar
  46. Colomer, V., Kicska, G.A. and Rindler, M.J. (1996) Secretory granule content proteins and the luminal domains of granule membrane proteins aggregatein vitro at mildly acidic pH.J. Biol. Chem. 271: 48–55.PubMedCrossRefGoogle Scholar
  47. Conibear, E. and Stevens, T.H. (1995) Vacuolar biogenesis in yeast: Sorting out the sorting proteins.Cell 83: 513–516.PubMedCrossRefGoogle Scholar
  48. Conrad, P.A., Smart, E.J., Ying, Y.S., Anderson, R.G. and Bloom, G.S. (1995) Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps.J. Cell Biol. 131: 1421–1433.PubMedCrossRefGoogle Scholar
  49. Cool, D.R., Fenger, M., Snell, C.R. and Loh, Y.P. (1995) Identification of the sorting signal motif within proopiomelanocortin for the regulated secretory pathway.J. Biol. Chem. 270: 8723–8729.PubMedCrossRefGoogle Scholar
  50. Cool, D.R., Normant, E., Shen, F., Chen, H.-C., Pannell, L., Zhang, Y. and Loh, Y.P. (1997) Carboxypeptidase E is a regulated secretory pathway sorting receptor: Genetic obliteration leads to endocrine disorders in Cpefat mice.Cell 88: 73–83.PubMedCrossRefGoogle Scholar
  51. Coorssen, J.R., Schmitt, H. and Almers, W. (1996) Ca2+ triggers massive exocytosis in Chinese hamster ovary cells.EMBO J. 15: 3787–3791.PubMedCentralPubMedGoogle Scholar
  52. Cosson, P., Demolliere, C., Hennecke, S., Duden, R. and Letourneur, F. (1996) Delta-and zeta-COP, two coatomer subunits homologous to clathrin-associated proteins, are involved in ER retrieval.EMBO J. 15: 1792–1798.PubMedCentralPubMedGoogle Scholar
  53. Cosson, P. and Letourneur, F. (1994) Coatomer interaction with di-lysine endoplasmic reticulum retention motifs.Science 263: 1629–1631.PubMedCrossRefGoogle Scholar
  54. Dahan, S., Ahluwalia, J.P., Wong, L., Posner, B.I. and Bergeron, J.J. (1994) Concentration of intracellular hepatic apoliprotein E in Golgi apparatus saccular distensions and endosomes.J. Cell Biol. 127: 1859–1869.PubMedCrossRefGoogle Scholar
  55. Dascher, C., Matteson, J. and Balch, W.E. (1994) Syntaxin 5 regulates endoplasmic reticulum to Golgi transport.J. Biol. Chem. 269: 29363–29366.PubMedGoogle Scholar
  56. de Almeida, J.B., Doherty, J., Ausiello, D.A. and Stow, J.L. (1993) Binding of the cytosolic p200 protein to Golgi membranes is regulated by heterotrimeric G proteins.J. Cell Sci. 106(4): 1239–1248.PubMedGoogle Scholar
  57. De Camilli, P., Emr, S.D., McPherson, P.S. and Novick, P. (1996) Phosphoinositides as regulators in membrane traffic.Science 271: 1533–1538.PubMedCrossRefGoogle Scholar
  58. De Camilli, P. and Takei, K. (1996) Molecular mechanisms in synaptic vesicle endocytosis and recycling.Neuron 16: 481–486.PubMedCrossRefGoogle Scholar
  59. Dell’Angelica, E.C., Ohno, H., Ooi, C.E., Rabinovich, E., Roche, K.W. and Bonifacino, J.S. (1997) AP-3: an adaptor-like protein complex with ubiquitous expression.EMBO J. 16: 917–928.PubMedCentralPubMedCrossRefGoogle Scholar
  60. Denker, S., McCaffery, J.M., Palade, G.E., Insel, P.A. and Farquhar, M.G. (1996) Differential distribution of α subunits and fry subunits of heterotrimeric G proteins on Golgi membranes of the exocrine pancreas.J. Cell Biol. 133: 1027–1040.PubMedCrossRefGoogle Scholar
  61. Dirac-Svejstrup, A.B., Soldati, T., Shapiro, A.D. and Pfeffer, S.R. (1994) Rab-GDI present functional Rab9 to the intracellular transport machinery and contributes selectively to Rab9 membrane recruitment.J. Biol. Chem. 269: 15427–15430.PubMedGoogle Scholar
  62. Donaldson, J.G., Finazzi, D. and Klausner, R.D. (1992) Brefeldin A inhibits Golgi-membrane-catalyzed exchange of guanine nucleotide onto ARF protein.Nature 360: 350–352.PubMedCrossRefGoogle Scholar
  63. Donaldson, J.G., Kahn, R.A., Lippincott-Schwartz, J. and Klausner, R.D. (1991) Binding of ARF and beta-COP to Golgi membranes: possible regulation by a trimeric G protein.Science 254: 1197–1199.PubMedCrossRefGoogle Scholar
  64. Donaldson, J.G. and Klausner, R.D. (1994) ARF: a key regulatory switch in membrane traffic and organelle structure.Curr. Opin. Cell Biol. 6: 527–532.PubMedCrossRefGoogle Scholar
  65. Draper, R.K., Goda, Y., Brodsky, F.M. and Pfeffer, S.R. (1990) Antibodies to clathrin inhibit endocytosis but not recycling to thetrans-Golgi networkin vitro. Science 248: 1539–1541.PubMedCrossRefGoogle Scholar
  66. Duden, R., Allan, V. and Kreis, T. (1991a) Involvement of ß-COP in membrane traffic through the Golgi complex.Trends Cell Biol. 1: 14–19.PubMedCrossRefGoogle Scholar
  67. Duden, R., Griffiths, G., Frank, R., Argos, P. and Kreis, T.E. (1991b) ß-COP, a 110 kD protein assciated with non-clathrin-coated vesicles and the Golgi complex, shows homology to ß-adaptin.Cell 64: 649–665.PubMedCrossRefGoogle Scholar
  68. Dunphy, W.G., Brands, R. and Rothman, J.E. (1985) Attachment of terminal N-acetylglucosamine to asparaginelinked oligosaccharides occurs in central cisternae of the Golgi stack.Cell 40: 463–472.PubMedCrossRefGoogle Scholar
  69. Dunphy, W.G. and Rothman, J.E. (1983) Compartmentation of asparagine-linked oligosaccharide processing in the Golgi appartus.J. Cell Biol. 97: 270–275.PubMedCrossRefGoogle Scholar
  70. Dupree, P., Parton, R.G., Raposo, G., Kurzchalia, T.V. and Simons, K. (1993) Caveolae and sorting in thetrans-Golgi network of epithelial cells.EMBO J. 12: 1597–1605.PubMedCentralPubMedGoogle Scholar
  71. Dustin, M.L., Baranski, T.J., Sampath, D. and Kornfeld, S. (1995) A novel mutagenesis strategy identifies distantly spaced amino acid sequences that are required for the phosphorylation of both the oligosaccharides of procathepsin D by N-acetylglucosamine 1-phosphotransferase.J. Biol. Cheat. 270: 170–179.CrossRefGoogle Scholar
  72. Farquhar, M.G. (1985) Progress in unraveling pathways of Golgi traffic.Ann. Rev. Cell Biol. 1: 447–488.PubMedCrossRefGoogle Scholar
  73. Farquhar, M.G. (1991) Protein traffic through the Golgi. In: C. Steer and J. Hanover (eds):Intracellular Trafficking of Proteins, Cambridge University Press, Cambridge, pp 431–471.Google Scholar
  74. Farquhar, M.G. and Palade, G.E. (1981) The Golgi apparatus (complex)-(1954–1981)-from artefact to center stage.J. Cell Biol. 91: 77S–103S.PubMedCrossRefGoogle Scholar
  75. Faulstich, D., Auerbach, S., Orci, L., Ravazzola, M., Wegchlingel, S., Lottspeich, F., Stenbeck, G., harter, C., Wieland, F.T. and Tschochner, H. (1996) Architecture of coatomer: molecular characterization of delta-COP and protein interactions within the complex.J. Cell Biol. 135: 53–61.PubMedCrossRefGoogle Scholar
  76. Ferro-Novick, S. and Jahn, R. (1994) Vesicle fusion from yeast to man.Nature 370: 191–193.PubMedCrossRefGoogle Scholar
  77. Ferro-Novick, S. and Novick, P. (1993) The role of GTP-binding proteins in transport along the exocytic pathway.Ann. Rev. Cell Biol. 9: 575–599.PubMedCrossRefGoogle Scholar
  78. Fiedler, K., Kobayashi, T., Kurzchalia, T.V. and Simons, K. (1993) Glycosphingolipid-enriched, detergent-insoluble complexes in protein sorting in epithelial cells.Biochemistry 32: 6365–6375.PubMedCrossRefGoogle Scholar
  79. Fiedler, K., Lafont, F., Parton, R.G. and Simons, K. (1995) Annexin XIIIb: a novel epithelial specific annexin is implicated in vesicular traffic to the apical plasma membrane.J. Cell Biol. 128: 1043–1053.PubMedCrossRefGoogle Scholar
  80. Fiedler, K., Parton, R.G., Kellner, R., Etzold, T. and Simons, K. (1994) VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells.EMBO J. 13: 1729–1740.PubMedCentralPubMedGoogle Scholar
  81. Fiedler, K. and Simons, K. (1995) The role of N-glycans in the secretory pathway.Cell 81: 309–312.PubMedCrossRefGoogle Scholar
  82. Fiedler, K., Veit, M., Stamnes, M.A. and Rothman, J.E. (1996) Biomodal interaction of coatomer with the p24 family of putative cargo receptors.Science 273: 1396–1399.PubMedCrossRefGoogle Scholar
  83. Fleischer, B., Xie, J., Mayrleitner, M., Shears, S.B., Palmer, D.J. and Fleischer, S. (1994) Golgi coatomer binds, and forms K(+)-selective channels gated by, inositol polyphosphates.J. Biol. Chem. 269: 17862–17832.Google Scholar
  84. Franco, M., Paris, S. and Chabre, M. (1995) The small G-protein ARF1GDP binds to the Gt beta gamma subunit of transducin, but not to Gt alpha GDP-Gt beta gamma.FEBS Lett. 362: 286–290.PubMedCrossRefGoogle Scholar
  85. Frohman, M.A. and Morris, A.J. (1996) Rho is only ARF the story. Phospholipid signalling.Curr. Biol. 6: 945–947.PubMedCrossRefGoogle Scholar
  86. Fujimoto, T. (1993) Calcium pump of the plasma membrane is localized in caveolae.J. Cell Biol. 120: 1147–1157.PubMedCrossRefGoogle Scholar
  87. Futter, C.E., Connolly, C.N., Cutler, D.F. and Hopkins, C.R. (1995) Newly synthesized transferrin receptors can be detected in the endosome before they appear on the cell surface.J. Biol. Chem. 270: 10999–11003.PubMedCrossRefGoogle Scholar
  88. Gaidarov, I., Chen, Q., Falck, J.R., Reddy, K.K. and Keen, J.H. (1996) A functional phosphatidylinositol 3,4,5trisphosphate/phosphoinositide binding domain in the clathrin adaptor AP-2 alpha subunit. Implications for the endocytic pathway.J. Biol. Chem. 271: 20922–20929.PubMedCrossRefGoogle Scholar
  89. Galteau, M.M., Antoine, B. and Reggio, H. (1985) Epoxide hydrolase is a marker for the smooth endoplasmic reticulum in rat liver.EMBO J. 4: 2793–2800.PubMedCentralPubMedGoogle Scholar
  90. Gaynor, E.C., te Heesen, S., Graham, T.R., Aebi, M. and Emr, S.D. (1994) Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast.J. Cell Biol. 127: 653–665.PubMedCrossRefGoogle Scholar
  91. Gething, M.-J. and Sambrook, J. (1992) Protein folding in the cell.Nature 355: 33–45.PubMedCrossRefGoogle Scholar
  92. Geuze, H.J., Slot, J.W., Strous, G.J., Hasilik, A. and Von Figura, K. (1984) Ultrastructural localization of the mannose 6-phosphate receptor in rat liver.J. Cell Biol. 98: 2047–2054.PubMedCrossRefGoogle Scholar
  93. Ghitescu, L., Fixman, A., Simionescu, M. and Simionescu, N. (1986) Specific binding sites for albumin restricted to plasmalemma) vesicles of continuous capillary endothelium: receptor-mediated transcytosis.J. Cell Biol. 102: 1304–1311.PubMedCrossRefGoogle Scholar
  94. Ghosh, S., Strum, J.C., Sciorra, V.A., Daniel, L. and Bell, R.M. (1996) Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells.J. Biol. Chem. 271: 8472–8480.PubMedCrossRefGoogle Scholar
  95. Gimeno, R.E., Espenshade, P. and Kaiser, C.A. (1995) SED4 encodes a yeast endoplasmic reticulum protein that binds Sec l6p and participates in vesicle formation.J. Cell Biol. 131: 325–338.PubMedCrossRefGoogle Scholar
  96. Glickman, J., Croen, K., Kelly, S. and Al-Awqati, Q. (1983) Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance.J. Cell Biol. 97: 1303–1308.PubMedCrossRefGoogle Scholar
  97. Glickman, J.N., Conibear, E. and Pearse, B.M.F. (1989) Specificity of binding of clathrin adaptors to signals on the mannose 6-phosphate/insulin-like growth factor II receptor.EMBO J. 8: 1041–1047.PubMedCentralPubMedGoogle Scholar
  98. Goldberg, D.E. and Kornfeld, S. (1983) EVidence for extensive subcellular oganization and asparagine-linked oligosaccharide processing and lysosomal enzyme phosphorylation.J. Biol. Chem. 258: 3159–3165.PubMedGoogle Scholar
  99. Gonatas, J.O., Mezitis, S.G., Stieber, A., Fleischer, B. and Gonatas, N.K. (1989) MG-160. A novel sialoglycoprotein of the medial cisternae of the Golgi apparatus (published erratum appears inJ. Biol. Chem. 1989, 264: 4264).J. Biol. Chem. 264: 646–653.Google Scholar
  100. Goud, B., Zahraoui, A., Tavitian, A. and Saraste, J. (1990) Small GTP-binding protein associated with the Golgi cisternae.Nature 345: 553–556.PubMedCrossRefGoogle Scholar
  101. Grassé, P.P. (1957)C.R. Acad. Sci. (Paris) 245: 1278–1281.Google Scholar
  102. Griffiths, G., Ericsson, M., Krijnse-Locker, J., Nilsson, T., Goud, B., Soling, H.D., Tang, B.L., Wong, S.H. and Hong, W. (1994) Localization of the Lys, Asp, Glu, Leu tetrapeptide receptor to the Golgi complex and the intermediate compartment in mammalian cells.J. Cell Biol. 127: 1557–1574.PubMedCrossRefGoogle Scholar
  103. Griffiths, G., Hoflack, B., Simons, K., Mel’man, I. and Kornfeld, S. (1988) The mannose 6-phosphate receptor and the biogenesis of lysosomes.Cell 52: 328–341.CrossRefGoogle Scholar
  104. Griffiths, G. and Simons, K. (1986) Thetrans-Golgi network: sorting at the exit site of the Golgi complex.Science 234: 438–443.PubMedCrossRefGoogle Scholar
  105. Griffiths, G., Warren, G., Quinn, P., Mathieu-Costello, O. and Hoppeler, H. (1984) Density of newly synthesized plasma membrane proteins in intracellular membranes. I. Stereological studies.J. Cell Biol. 98: 2133–2141.PubMedCrossRefGoogle Scholar
  106. Hammond, S.M., Jenco, J.M., Nakashima, S., Cadwallader, K., Gu, Q., Cook, S., Nozawa, Y., Prestwich, G.D., Frohman, M.A. and Morris, A.J. (1997) Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and RHO family monomeric GTP-binding proteins and protein kinase C.J. Biol. Chem. 272: 3860–3868.PubMedCrossRefGoogle Scholar
  107. Hara-Kuge, S., Kuge, O., Orci, L., Amherdt, M., Ravazzola, M., Wieland, F.T. and Rothman, J.E. (1994) En block incorporation of coatomer subunits during the assembly of COP-coated vesicles.J. Cell Biol. 124: 883–893.PubMedCrossRefGoogle Scholar
  108. Harter, C., Pavel, J., Coccia, F., Draken, E., Wegehingel, S., Tschochner, H. and Wieland, F. (1996) Nonclathrin coat protein gamma, a subunit of coatomer, binds to the cytoplasmic di-lysine motif of membrane proteins of the early secretory pathway.Proc. Natl Acad. Sci. USA 93: 1902–1906.PubMedCentralPubMedCrossRefGoogle Scholar
  109. Harter, C. and Wieland, F. (1995) The secretory pathway: mechanisms of protein sorting and transport.Biochim. Biophys. Acta 286: 75–93.Google Scholar
  110. Hauri, H.-P. and Schweizer, A. (1992) The endoplasmic reticulum-Golgi intermediate compartment.Curr. Opin. Cell Biol. 4: 600–608.PubMedCrossRefGoogle Scholar
  111. Hauri, H.-P. and Schweizer, A. (1997) The ER - Golgi membrane system: Compartmental organization and protein traffic. In: J.F. Hoffmann and J.D. Jamieson (eds):Handbook of Physiology. Oxford University Press for the American Physiological Society, New York, pp 605–642.Google Scholar
  112. Hayes, B.K., Freeze, H.H. and Varki, A. (1993) Biosynthesis of oligosaccharides in intact Golgi preparations from rat liver. Analysis of N-linked glycans labelled by UDP-[6–31]N-acetylglucosamine.J. Biol. Chem. 268: 16139–16154.PubMedGoogle Scholar
  113. Hayes, B.K. and Varki, A. (1993) Biosynthesis of oligosaccharides in intact Golgi preparations from rat liver. Analysis of N-linked glycans labelled by UDP-[6–3H]galactose, CMP-[9–3H]N-acetylneuraminic acid, and [acety1–3H]acetyl-coenzyme A.J. Biol. Chem. 268: 16155–16169.PubMedGoogle Scholar
  114. Helenius, A. (1994) How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum.Molec. Biol. Cell 5: 253–265.PubMedCentralPubMedCrossRefGoogle Scholar
  115. Helenius, A., Marquardt, T. and Braakman, I. (1992) The endoplasmic reticulum as a protein-folding compartment.Trends Cell Biol. 2: 227–231.PubMedCrossRefGoogle Scholar
  116. Helms, J.B. (1995) Role of heterotrimeric GTP binding proteins in vesicular protein transport: indications for both classical and alternative G protein cycles.FEBS Lett. 369: 84–88.PubMedCrossRefGoogle Scholar
  117. Helms, J.B. and Rothman, J.E. (1992) Inhibition by brefeldin A of a Golgi membrane enzyme that catalyzes exchange of guanine nucleotide bound to ARF.Nature 360: 352–354.PubMedCrossRefGoogle Scholar
  118. Hinshaw, J.E. and Schmid, S.L. (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding.Nature 374: 190–192.PubMedCrossRefGoogle Scholar
  119. Hobman, T.C., Woodward, L. and Farquhar, M.G. (1992) The rubella virus El glycoprotein is arrested in a novel, post-ER pre-Golgi compartment.J. Cell Biol. 118: 795–812.PubMedCrossRefGoogle Scholar
  120. Holstein, S.E., Ungewickell, H. and Ungewickell, E. (1996) Mechanism of clathrin basket dissociation:separate functions of protein domains of the DnaJ homologue auxilin.J. Cell Biol. 135:.Google Scholar
  121. Hong, W. (1996)Protein Trafficking along the Exocytotic Pathway. R.G. Landes Company, Austin.Google Scholar
  122. Humphrey, J.S., Peters, P.J., Yuan, L.C. and Bonifacino, J.S. (1993) Localization of TGN38 to thetrans-Golgi network: involvement of a cytoplasmic tyrosine-containing motif.J. Cell Biol. 120: 1123–1135.PubMedCrossRefGoogle Scholar
  123. Hunziker, W. and Geuze, H.J. (1996) Intracellular trafficking of lysosomal membrane proteins.Bioessays 18: 379–389.PubMedCrossRefGoogle Scholar
  124. Hurtley, S.M. and Helenius, A. (1989) Protein oligomerization in the endoplasmic reticulum.Ann. Rev. Cell Biol. 5: 277–307.PubMedCrossRefGoogle Scholar
  125. Huttner, W.B. (1988) Tyrosine sulfation and the secretory pathway.Ann. Rev. Physiol. 50: 363–376.CrossRefGoogle Scholar
  126. Huttner, W.B., Gerdes, H.-H. and Rosa, P. (1991) The granin (chromogranin/secretogranin) family.Trends Biol. Sci. 16: 27–30.CrossRefGoogle Scholar
  127. Ikonen, E., Tagaya, M., Ullrich, O., Montecucco, C. and Simons, K. (1995) Different requirements of NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells.Cell 81: 571–580.PubMedCrossRefGoogle Scholar
  128. Itin, C., Foguet, M., Kappeler, F., Klumperman, J. and Hauri, H.-P. (1995a). Recycling of the endoplasmic reticulum/Golgi intermediate compartment protein ERGIC-53 in the secretory pathway.Biochem. Soc. Trans. 23: 541–544.PubMedCrossRefGoogle Scholar
  129. Itin, C., Roche, A.-C., Monsigny, M. and Hauri, H.-P. (1996) ERGIC-53 is a functional mannose-selective and calcium-dependent human homologue of leguminous lectins.Molec. Biol. Cell 7: 483–493.PubMedCentralPubMedCrossRefGoogle Scholar
  130. Itin, C., Schindler, R. and Hauri, H.-P. (1995b). Targeting of protein ERGIC-53 to the ER/ERGIC/cis-Golgi recycling pathway.J. Cell Biol. 131: 57–67.PubMedCrossRefGoogle Scholar
  131. Jackson, M.R., Nilsson, T. and Peterson, P.A. (1990) Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum.EMBO J. 9: 3153–3162.PubMedCentralPubMedGoogle Scholar
  132. Jackson, M.R., Nilsson, T. and Peterson, P.A. (1993) Retrieval of transmembrane proteins to the endoplasmic reticulum.J. Cell Biol. 121: 317–333.PubMedCrossRefGoogle Scholar
  133. Jin, M., Saucan, L., Farquhar, M.G. and Palade, G.E. (1996) Rabla and multiple other Rab proteins are associated with the transcytotic pathway in rat liver.J. Biol. Chem. 271: 30105–30113.PubMedCrossRefGoogle Scholar
  134. Johnson, K.F. and Kornfeld, S. (1992) A his-leu-leu sequence near the carboxyl terminus of the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor is necessary for the lysosomal enzyme sorting function.J. Biol. Chem. 267: 17110–17115.PubMedGoogle Scholar
  135. Jones, S.M., Crosby, J.R., Salamero, J. and Howell, K.E. (1993) A cytosolic complex of p62 and rab6 associates with TGN38/41 and is involved in budding of exocytic vesicles from thetrans-Golgi network.J. Cell Biol. 122: 775–788.PubMedCrossRefGoogle Scholar
  136. Jung, L.J., Kreiner, T. and Scheller, R.H. (1993) Expression of mutant ELH prohormones in AtT-20 cells: the relationship between prohormone processing and sorting.J. Cell Biol. 121: 11–21.PubMedCrossRefGoogle Scholar
  137. Kahn, R.A. (1991) Fluoride is not an activator of the smaller (20–25 kD) GTP-binding proteins.J. Biol. Chem. 266: 15595–15597.PubMedGoogle Scholar
  138. Kain, R., Angata, K., Kerjaschki, D. and Fukuda, M. (1996) Molecular cloning and expression of humantrans-Golgi network 38 glycoprotein that contains unique extracellular sequence.Molec. Biol. Cell 7: 441a.Google Scholar
  139. Kasper, D., Dittmer, F., von Figura, K. and Pohlmann, R. (1996) Neither type of mannose 6-phosphate receptor is sufficient for targeting of lysosomal enzymes along intracellular routes.J. Cell Biol. 134: 615–623.PubMedCrossRefGoogle Scholar
  140. Kelly, R.B. (1985) Pathways of protein secretion in eukaryotes.Science 230: 25–32.PubMedCrossRefGoogle Scholar
  141. Kelly, R.B. (1990) Microtubules, membrane traffic, and cell organization.Cell 61: 5–7.PubMedCrossRefGoogle Scholar
  142. Kelly, R.B. (1991) Secretory granule and synaptic vesicle formation.Curr. Opin. Cell Biol. 3: 654–660.PubMedCrossRefGoogle Scholar
  143. Kelly, R.B. (1993) Storage and release of neurotransmitters.Cell 72: 43–53.PubMedCrossRefGoogle Scholar
  144. Kirchhausen, T. (1993) Coated pits and coated vesicles - sorting it all out.Curr. Struct. Biol. 3: 182–188.CrossRefGoogle Scholar
  145. Klausner, R.D., Donaldson, J.G. and Lippincott-Schwartz, J. (1992) Brefeldin A: insights into the control of membrane traffic and organelle structure.J. Cell Biol. 116: 1071–1080.PubMedCrossRefGoogle Scholar
  146. Klein, J., Chalifa, V., Liscovitch, M. and Loffelholz, K. (1995) Role of phospholipase D activation in nervous system physiology and pathophysiology.J. Neurochem. 65: 1445–1455.PubMedCrossRefGoogle Scholar
  147. Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides.Ann. Rev. Biochem. 54: 631–664.PubMedCrossRefGoogle Scholar
  148. Kornfeld, S. (1992) Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors.Ann. Rev. Biochem. 61: 307–330.PubMedCrossRefGoogle Scholar
  149. Kornfeld, S. and Mellman, I. (1989) The biogenesis of lysosomes.Ann. Rev. Cell Biol. 5: 483–525.PubMedCrossRefGoogle Scholar
  150. Kreis, T.E., Lowe, M. and Pepperkok, R. (1995) COPs regulating membrane traffic.Ann. Rev. Cell Biol. 11: 677–706.CrossRefGoogle Scholar
  151. Kreis, T.E. and Pepperkok, R. (1994) Coat proteins in intracellular membrane transport.Curr. Opin. Cell Biol. 6: 533–537.PubMedCrossRefGoogle Scholar
  152. Ktistakis, N.T., Brown, H.A., Sternweis, P.C. and Roth, M.G. (1995) Phospholipase D is present on Golgi-enriched membranes and its activation by ADP ribosylation factor is sensitive to brefeldin A.Proc. Natl Acad. Sci. USA 92: 4952–4956.PubMedCentralPubMedCrossRefGoogle Scholar
  153. Ktistakis, N.T., Brown, H.A., Waters, M.G., Sternweis, P.C. and Roth, M.G. (1996) Evidence that phospholipase D mediates ADP ribosylation factor - dependent formation of Golgi coated vesicles.J. Cell Biol. 134: 295–306.PubMedCentralPubMedCrossRefGoogle Scholar
  154. Ktistakis, N.T. and Roth, M.G. (1996) Protein sorting during endocytosis. In: S.M. Hurtley (ed.):Protein Targeting, IRL Press at Oxford University Press, Oxford, pp 176–212.Google Scholar
  155. Kurzchalia, T.V., Dupree, P., Parton, R.G., Kellner, R., Virta, H., Lehnert, M. and Simons, K. (1992) VIP21, a 21kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles.J. Cell Biol. 118: 1003–1014.PubMedCrossRefGoogle Scholar
  156. Kurzchalia, T.V. and Parton, R.G. (1996) And still they are moving…: Dynamic properties of caveolae.FEBS Lett. 389: 52–54.PubMedCrossRefGoogle Scholar
  157. Ladinsky, M.S., Kremer, J.R., Furcinitti, P.S., McIntosh, J.R. and Howell, K.E. (1994) HVEM tomography of thetrans-Golgi network: structural insights and identification of lace-like vesicle coat.J. Cell Biol. 127: 29–38.PubMedCrossRefGoogle Scholar
  158. Lahtinen, U., Hellman, U., Wernstedt, C., Saraste, J. and Pettersson, R.F. (1996) Molecular cloning and expression of a 58-kDa cis-Golgi and intermediate compartment protein.J. Biol. Chem. 271: 4031–4037.PubMedCrossRefGoogle Scholar
  159. Lamaze, C. and Schmid, S.L. (1995) The emergence of clathrin-independent pinocytic pathways.Curr. Opin. Cell Biol. 7: 573–580.PubMedCrossRefGoogle Scholar
  160. Lambert, M., Bui, N.-D. and Christophe, J. (1990) Novel GTP-binding proteins in plasma membranes and zymogen granule membranes from rat pancreas and in pancreatic AR 4–2J cell membranes.FEBS Lett. 271: 1922.CrossRefGoogle Scholar
  161. Leblond, C.P. (1989) Synthesis and secretion of collagen by cells of connective tissue, bone, and dentin.Anatomical Record 224: 123–138.PubMedCrossRefGoogle Scholar
  162. Le Borgone, R., Griffiths, G. and Hoflack, B. (1996) Mannose 6-phosphate receptors and ADP-ribosylation factors cooperate for high affinity interaction of AP-1 Golgi assembly proteins with membranbes.J. Biol. Chem. 271: 2162–2170.CrossRefGoogle Scholar
  163. Le Borgone, R. and Hoflack, B. (1997) Mannose 6-phosphate receptors regulate the formation of clathrin-coated vesicles in the TNG.J. Cell Biol. 137: 335–345.CrossRefGoogle Scholar
  164. Le Gall, A.H., Yeaman, C., Muesch, A. and Rodriguez-Boulan, E. (1995) Epithelial cell polarity: New perspectives.Seminars Nephrol. 15: 272–284.Google Scholar
  165. Leitinger, B., Hille-Rehfeld, A. and Spiess, M. (1995) Biosynthetic transport of the asialoglycoprotein receptor Hl to the cell surface occurs via endosomes.Proc. Natl Acad. Sci. USA 92: 10109–10113.PubMedCentralPubMedCrossRefGoogle Scholar
  166. Lepage-Lezin, A., Joseph-Bravo, P., Devilliers, G., Benedetti, L., Launay, J.M., Gomez, S. and Cohen, P. (1991) Prosomatostatin is processed in the Golgi apparatus of rat neural cells.J. Biol. Chem. 266: 1679–1688.PubMedGoogle Scholar
  167. Letourneur, F., Gaynor, E.C., Hennecke, S., Démollière, C., Duden, R., Emr, S.D., Riezman, H. and Cosson, P. (1994) Coatomer is essential for retrieval of di-lysine-tagged proteins to the ER.Cell 79: 1199–1207.PubMedCrossRefGoogle Scholar
  168. Lewis, M.J. and Pelham, H.R.B. (1996) SNARE-mediated retrograde traffic from the Golgi complex to the endoplasmic reticulum.Cell 85: 205–215.PubMedCrossRefGoogle Scholar
  169. Li, G., D’Souza-Schorey, C., Barbieri, M.A., Roberts, R.L., Klippel, A., Williams, L.T. and Stahl, P.D. (1995) Evidence for phosphatidylinositol 3-kinase as a regulator of endocytosis via activation of Rab5.Proc. Natl Acad. Sci. USA 92: 10207–10211.PubMedCentralPubMedCrossRefGoogle Scholar
  170. Lindstedt, A.D. and Hauri, H.-P. (1993) Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kD.Molec. Cell Biol. 4: 679–693.CrossRefGoogle Scholar
  171. Lindstedt, A.D. and Hauri, H.-P. (1997) Sequence and overexpression of GPP130/GIMPc: Evidence for saturable pH-sensitive targeting of a type II early Golgi membrane protein.Molec. Biol. Cell; in press. Google Scholar
  172. Lisanti, M.P., Scherer, P.E., Tang, Z. and Sargiacomo, M. (1994) Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis.Trends Cell Biol. 4: 231–235.PubMedCrossRefGoogle Scholar
  173. Liscovitch, M. and Cantley, L.C. (1995) Signal transduction and membrane traffic: The PITP/Phosphoinositide connection.Cell 81: 659–662.PubMedCrossRefGoogle Scholar
  174. Liu, S.H., Wong, M.L., Craik, C.S. and Brodsky, F.M. (1995) Regulation of clathrin assembly and trimerization defined using recombinant triskelion hubs.Cell 83: 257–267.PubMedCrossRefGoogle Scholar
  175. Lombardi, D., Soldati, T., Riederer, M.A., Goda, Y., Zerial, M. and Pfeffer, S.R. (1993) Rab9 functions in transport between late endosomes and thetrans-Golgi network.EMBO J. 12: 677–682.PubMedCentralPubMedGoogle Scholar
  176. Lotti, L.V., Torrisi, M.R., Erra, M.C. and Bonatti, S. (1996) Morphological analysis of the transfer of VSV is-045 G glycoprotein from the endoplasmic reticulum to the intermediate compartment in vero cells.Exp. Cell Res. 227: 323–331.PubMedCrossRefGoogle Scholar
  177. Louvard, D., Kedinger, M. and Hauri, H.-P. (1992) The differentiating intestinal epithelial cell: establishment and maintenance of functions through interactions between cellular structures.Ann. Rev. Cell Biol. 8: 157–195.PubMedCrossRefGoogle Scholar
  178. Lowe, M. and Kreis, T.E. (1995)In vitro assembly and disassembly of coatomer.J. Biol. Chem. 270: 31364–31371.PubMedCrossRefGoogle Scholar
  179. Lutcke, A., Parton, R.G., Murphy, C., Olkkonen, V.M., Dupree, P., Valencia, A., Simons, K. and Zerial, M. (1994) Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression.J. Cell Sci. 107: 3437–48.PubMedGoogle Scholar
  180. Luzio, J.-P., Brake, B., Bantin, G., Howell, K.E., Braghetta, P. and Stanley, K.K. (1990) Identification, sequencing, and expression of an integral membrane protein of the trans-Golgi network, TGN 38.Biochemistry J 270: 97102.CrossRefGoogle Scholar
  181. Machamer, C.E. (1993) Targeting and retention of Golgi membrane proteins.Curr. Opin. Cell Biol. 5: 606–612.PubMedCrossRefGoogle Scholar
  182. Machamer, C.E. (1996) ER-Golgi membrane traffic and protein targeting. In: S. M. Hurtley (ed.):Protein Targeting, IRL Press at Oxford University Press, Oxford, pp 123–151.Google Scholar
  183. Machamer, C.E., Mentone, S.A., Rose, J.K. and Farquhar, M.G. (1990) The El glycoprotein of an avian coronavirus is targeted to the cis-Golgi complex.Proc. Natl Acad. Sci. USA 87: 6944–6948.PubMedCentralPubMedCrossRefGoogle Scholar
  184. Machamer, C.E. and Rose, J.K. (1987) A specific transmembrane domain of a coronavirus El glycoprotein is required for its retention in the Golgi region.J. Cell Biol. 105: 1205–1214.PubMedCrossRefGoogle Scholar
  185. Mahaffey, D.T., Peeler, J.S., Brodsky, F.M. and Anderson, R.G. (1990) Clathrin-coated pits contain an integral membrane protein that binds the AP-2 subunit with high affinity.J. Biol. Chem. 265: 16514–16520.PubMedGoogle Scholar
  186. Mandon, E., Kempner, E.S., Ishihara, M. and Hirschberg, C.B. (1994) A monomeric protein in the Golgi membrane catalyzes both N-deacetylation and N-sulfation of heparan sulfate.J. Biol. Chem. 269: 11729–11733.PubMedGoogle Scholar
  187. Marks, M.S., Ohno, H., Kirchhausen, T. and Bonifacino, S.J. (1997) Protein sorting by tyrosine-based signals: Adapting to the Ys and wherefores.Trends Cell Biol. 7: 124–128.PubMedCrossRefGoogle Scholar
  188. Marks, M.S., Woodruff, L., Ohno, H. and Bonifacino, J.S. (1996) Protein targeting by tyrosine-and di-leucinebases signals: Evidence for distinct saturable components.J. Cell Biol. 135: 341–354.PubMedCrossRefGoogle Scholar
  189. Marti, U., Hauri, H.P. and Meyer, U.A. (1990) Induction of cytochrome P450 by phenobarbital in rat liver visualized by monoclonal antibody immunoelectron microscopyin situ. Eur. J. Cell Biol. 52: 193–200.PubMedGoogle Scholar
  190. Martinez, O., Schmidt, A., Salamero, J., Hoflack, B., Roa, M. and Goud, B. (1994) The small GTP-binding protein rab6 functions in intra-Golgi transport.J. Cell Biol. 127: 1575–1588.PubMedCrossRefGoogle Scholar
  191. Matter, K. and Mellman, I. (1994) Mechanism of cell polarity: sorting and transport in epithelial cells.Curr. Opin. Cell Biol. 6: 545–554.PubMedCrossRefGoogle Scholar
  192. Mayer, A., Wickner, W. and Haas, A. (1996) Secl8p (NSF)-driven release of Secl7p(alpha-SNAP) can precede docking and fusion of yeast vacuoles.Cell 85: 83–94.PubMedCrossRefGoogle Scholar
  193. McGee, T.P., Skinner, H.B., Whitters, E.A., Henry, S.A. and Bankaitis, V.A. (1994) A phosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes.J. Cell Biol. 124: 273–287.PubMedCrossRefGoogle Scholar
  194. Melancon, P., Glick, B.S., Malhotra, V., Weidman, P.J., Serafini, T., Gleason, M., Orci, L. and Rothman, J.E. (1987) Involvement of GTP-binding “G”proteins in transport through the Golgi stack.Cell 51: 1053–1062.PubMedCrossRefGoogle Scholar
  195. Mellman, I (1996) Endocytosis and molecular sorting.Ann. Rev. Cell Develop. Biol. 12: 575–625.CrossRefGoogle Scholar
  196. Mellman, I. and Simons, K. (1992) The Golgi complex:In vitro veritas?Cell 68: 829–840.PubMedCrossRefGoogle Scholar
  197. Mendis-Handagama, S.M., Zirkin, B.R. and Ewing, L.L. (1989) Comparison of components of the testis interstitium with testosterone secretion in hamster rat, and guinea pig testes perfusedin vitro.Am. J. Anat. 181: 12–22.CrossRefGoogle Scholar
  198. Merisko, E.M., Fletcher, M. and Palade, G.E. (1986) The reorganization of the Golgi complex in anoxic pancreatic acinar cells.Pancreas 1: 95–109.PubMedCrossRefGoogle Scholar
  199. Miller, S.G. and Moore, H.-P. (1990) Regulated secretion.Curr. Opin. Cell Biol. 2: 642–647.PubMedCrossRefGoogle Scholar
  200. Mizuno, M. and Singer, S.J. (1993) A soluble secretory protein is first concentrated in the endoplasmic reticulum before transfer to the Golgi apparatus.Proc. Natl Acad. Sci. USA 90: 5732–5736.PubMedCentralPubMedCrossRefGoogle Scholar
  201. Montesano, R., Roth, J., Robert, A. and Orci, L. (1982) Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins.Nature 296: 651–653.PubMedCrossRefGoogle Scholar
  202. Moore, H.-P.H., Orci, L. and Oster, G.F. (1988) Biogenesis of secretory vesicles. In: R.C. Das and P.W. Robbins (eds):Protein Transfer and Organelle Biogenesis, Academic Press, San Diego, pp 521–561.Google Scholar
  203. Morinaga, N., Tsai, S.-C., Moss, J. and Vaughan, M. (1996) Isolation of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP ribosylation factor (ARF)1 and ARF3 that contains a Sec7-like domain:Proc. Natl Acad. Sci. USA 93: 12856–12860.PubMedCentralPubMedCrossRefGoogle Scholar
  204. Morré, D.J., Franke, W.W., Deumling, B., Nyquist, S.E. and Outracht, L. (1971) Golgi apparatus function in membrane flow and differentiation: Origin of plasma membranes from endoplasmic reticulum.Biomembranes 2: 95–104.CrossRefGoogle Scholar
  205. Morré, D.J., Kartenbeck, J. and Franke, W.W. (1979) Membrane flow and interconversions among endomembranes.Biochim. Biophys. Acta 559: 71–152.PubMedCrossRefGoogle Scholar
  206. Munro, S. (1991) Sequences within and adjacent to the transmembrane segment of a2,6-sialyltransferase specify Golgi retention.EMBO J. 10: 3577–3588.PubMedCentralPubMedGoogle Scholar
  207. Munro, S. (1995) An investigation of the role of transmembrane domains in Golgi protein retention.EMBO J. 14: 4695–4704.PubMedCentralPubMedGoogle Scholar
  208. Munro, S. and Pelham, H.R. (1986) An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein.Cell 46: 291–300.PubMedCrossRefGoogle Scholar
  209. Murata, M., Peränen, J., Schreiner, R., Wieland, F., Kurzchalia, T.V. and Simons, K. (1995) VIP21/caveolin is a cholesterol-binding protein.Proc. Natl Acad. Sci. USA 92: 10339–10343.PubMedCentralPubMedCrossRefGoogle Scholar
  210. Murphy, C., Saffrich, R., Grummt, W., Gournier, H., Rybin, V., Rubino, M., Auvinen, P., Lutcke, A., Parton, R.G. and Zerial, M. (1996) Endosome dynamics regulated by a Rho protein.Nature 384: 427–432.PubMedCrossRefGoogle Scholar
  211. Narula, N., McMorrow, I., Plopper, G., Doherty, J., Matlin, K.S., Burke, B. and Stow, J.L. (1992) Identification of a 200-kD, brefeldin-sensitive protein on Golgi membranes.J. Cell Biol. 117: 27–38.PubMedCrossRefGoogle Scholar
  212. Narula, N. and Stow, J.L. (1995) Distinct coated vesicles labelled for p200 bud fromtrans-Golgi network membranes.Proc. Natl Acad. Sci. USA 92: 2874–2878.PubMedCentralPubMedCrossRefGoogle Scholar
  213. Newman, A.P., Graf, J., Mancini, P., Rossi, G., Lian, J.P. and Ferro-Novick, S. (1992) Sec22 and SLY2 are identical.Mol. Cell Biol. 12: 3663–3664.PubMedCentralPubMedCrossRefGoogle Scholar
  214. Niehrs, C. and Huttner, W.B. (1990) Purification and characterization of tyrosylprotein sulfotransferase.EMBO J. 9: 35–42.PubMedCentralPubMedGoogle Scholar
  215. Nilsson, T., Lucocq, J.M., Mackay, D. and Warren, G. (1991) The membrane spanning domain of (31,4-galactosyltransferase specifiestrans-Golgi localization.EMBO J. 10: 1367–1375.Google Scholar
  216. Nilsson, T., Pypaert, M., Hoe, M.H., Slusarevicz, P., Berger, E.G. and Warren, G. (1993a). Overlapping distribution of two glycosyltransferases in the Golgi apparatus of HeLa cells.J. Cell Biol. 120: 5–13.PubMedCrossRefGoogle Scholar
  217. Nilsson, T., Slusarewicz, P., Hoe, M.H. and Warren, G. (1993b). Kin recognition: a model for the retention of Golgi enzymes.FEBS Lett. 330: 1–4.PubMedCrossRefGoogle Scholar
  218. Nilsson, T., Rabouille, C., Hui, N., Watson, R. and Warren, G. (1996) The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the Golgi apparatus in HeLa cells.J. Cell Sci. 109: 1975–1989.PubMedGoogle Scholar
  219. Nilsson, T. and Warren, G. (1994) Retention and retrieval in the endoplasmic reticulum and the Golgi apparatus.Curr. Opin. Cell Biol. 6: 517–521.PubMedCrossRefGoogle Scholar
  220. Notwehr, S.F., Conibear, E. and Stevens, T.H. (1995) Golgi and vacuolar membrane proteins reach the vacuole in vpsl mutant yeast cells via the plasma membrane.J. Cell Biol. 129: 35–46.CrossRefGoogle Scholar
  221. Novick, P. and Brennwald, P. (1993) Friends and family: the role of Rab GTPases in vesicular traffic.Cell 75: 597–601.PubMedCrossRefGoogle Scholar
  222. Novick, P., Field, C. and Schekman, R. (1980) Identification of 23 complementation groups required for posttranslational events in the yeast secretory pathway.Cell 21: 205–215.PubMedCrossRefGoogle Scholar
  223. Novick, P., Garrett, M.D., Brennwald, P., Lauring, A., Finger, F.P., Collins, R. and TerBush, D.R. (1995) Control of exocytosis in yeast.Cold Spring Harbor Symp. Quant. Biol. 60: 171–177.PubMedCrossRefGoogle Scholar
  224. Nuoffer, C. and Balch, W.E. (1994) GTPase: Multifunctional molecular switches regulating vesicular traffic.Ann. Rev. Biochem. 63: 949–90.PubMedCrossRefGoogle Scholar
  225. Nürnberg, B. and Ahnert-Hilger, G. (1996) Potential roles of heterotrimeric G proteins of the endomembrane system.FEBS Lett. 389: 61–65.PubMedCrossRefGoogle Scholar
  226. Ohno, H., Fournier, M.C., Poy, G. and Bonifacino, J.S. (1996) Structural determinants of interaction of tyrosine-based sorting signals with the adaptor medium chains.J. Biol. Chem. 271: 29009–29015.PubMedCrossRefGoogle Scholar
  227. Ohno, H., Stewart, J., Fournier, M.C., Bosshart, H., Rhee, I., Miyatake, S., Saito, T., Gallusser, A., Kirchhausen, T. and Bonifaciono, J.S. (1995) Interaction of tyrosine-based sorting signals with clathrin-associated proteins.Science 269: 1872–1875.PubMedCrossRefGoogle Scholar
  228. Orci, L., Palmer, D.J., Amherdt, M. and Rothman, J.E. (1993) Coated vesicles assembly in the Golgi requires only coatomer and ARF proteins from the cytosol.Nature 364: 732–734.CrossRefGoogle Scholar
  229. Orci, L., Ravazzola, M., Amherdt, M., Perrelet, A., Powell, S.K., Quinn, D.L. and Moore, H.P. (1987) Thetrans-most cisternae of the Golgi complex: a compartment for sorting of secretory and plasma membrane proteins.Cell 51: 1039–1051.PubMedCrossRefGoogle Scholar
  230. Orci, L., Ravazzola, M., Meda, P., Holcomb, C., Moore, H.-P., Hicke, L. and Schekman, R. (1991) Mammalian sec 23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm.Proc. Natl Acad. Sci. USA 88: 8611–8615.PubMedCentralPubMedCrossRefGoogle Scholar
  231. Orci, L., Schekman, R. and Perrelet, A. (1996) Interleaflet clear space is reduced in the membrane of COP I and COP II-coated buds/vesicles.Proc. Natl Acad. Sci. USA 93: 8968–8970.PubMedCentralPubMedCrossRefGoogle Scholar
  232. Ostermann, J., Orci, L., Tani, K., Amherdt, M., Ravazzola, M., Elazar, Z. and Rothman, J.E. (1993) Stepwise assembly of functionally active transport vesicles.Cell 75: 1015–1025.PubMedCrossRefGoogle Scholar
  233. Padfield, P.J. and Jamieson, J.D. (1991) Low molecular weight GTP-binding proteins associated with zymogen granule membranes from rat pancreas.Biochem. Biophys. Res. Comm. 174: 600–605.PubMedCrossRefGoogle Scholar
  234. Palade, G.E. (1953) Fine structure of blood capillaries.J. Appl. Physics 24: 1424.Google Scholar
  235. Palade, G.E. (1975) Intracellular aspects of the process of protein secretion.Science 189: 347–358.PubMedCrossRefGoogle Scholar
  236. Palade, G.E. (1997) Role of plasmalemmal vesicles in microvascular permeability. In: R. G. Crystal and J.B. West (eds):The Lung: Scientific Foundations, Lippincott-Raven Publishers, Philadelphia, pp 673–683.Google Scholar
  237. Parton, R.G. (1996) Caveolae and caveolins.Curr. Opin. Cell Biol. 8: 542–548.PubMedCrossRefGoogle Scholar
  238. Parton, R.G., Joggerst, B. and Simons, K. (1994) Regulated internalization of caveolae.J. Cell Biol. 127: 1199–1215.PubMedCrossRefGoogle Scholar
  239. Pearse, B.M. and Robinson, M.S. (1990) Clathrin, adaptors, and sorting.Ann. Rev. Cell Biol. 6: 151–171.PubMedCrossRefGoogle Scholar
  240. Pelham, H.R.B. (1988) Evidence that luminal ER proteins are sorted from secreted proteins in post-ER compartment.EMBO J. 7: 913–918.PubMedCentralPubMedGoogle Scholar
  241. Pelham, H.R.B. (1989) Control of protein exit from the endoplasmic reticulum.Ann. Rev. Cell Biol. 5: 1–23.PubMedCrossRefGoogle Scholar
  242. Pelham, H.R.B. (1991) Recycling of proteins between the endoplasmic reticulum and Golgi complex.Curr. Opin. Cell Biol. 3: 585–591.PubMedCrossRefGoogle Scholar
  243. Pelham, H.R.B. (1994) About turn for the COPs?Cell 79: 1125–1127.PubMedCrossRefGoogle Scholar
  244. Pelham, H.R.B. (1995) Sorting and retrieval between the endoplasmic reticulum and Golgi apparatus.Curr. Opin. Cell Biol. 7: 530–535.PubMedCrossRefGoogle Scholar
  245. Pelham, H.R.B., Banfield, D.K. and Lewis, M.J. (1995) SNAREs involved in traffic through the Golgi complex.Cold Spring Harbor Symp. Quant. Biol. XL: 105–11.CrossRefGoogle Scholar
  246. Pepperkok, R., Scheel, J., Horstmann, H., Hauri, H.-P., Griffiths, G. and Kreis, T.E. (1993) Beta-COP is essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complexin vivo.Cell 74: 71–82.PubMedCrossRefGoogle Scholar
  247. Peter, F., Plutner, H., Zhu, H., Kreis, T.E. and Balch, W.E. (1993) Beta-COP is essential for transport of protein from the endoplasmic reticulum to the Golgiin vitro.J. Cell Biol. 122: 1155–1167.PubMedCrossRefGoogle Scholar
  248. Peters, P.J., Hsu, V.W., Ooi, C.E., Finazzi, D., Teal, S.B., Oorschot, V., Donaldson, J. and Klausner, R.D. (1995) Overexpression of wildtype and mutant ARF1 and ARF6: Distinct perturbations of nonoverlapping membrane compartments.J. Cell Biol. 128: 1003–1017.PubMedCrossRefGoogle Scholar
  249. Peyroche, A., Paris, S. and Jackson, C.L. (1996) Nucleotide exchange on ARF mediated by yeast Geal protein.Nature 384: 479–481.PubMedCrossRefGoogle Scholar
  250. Pfeffer, S.R. (1994) Rab GTPases: master regulators of membrane trafficking.Curr. Opin. Cell Biol. 6: 522–526.PubMedCrossRefGoogle Scholar
  251. Pfeffer, S.R. (1996) Transport vesicle docking: SNAREs and associates.Ann. Rev. Cell Develop. Biol. 12: 441–461.Google Scholar
  252. Pfeffer, S.R. and Rothman, J.E. (1987) Biosynthetic protein transport and sorting by the endoplasmic reticulum and the Golgi apparatus.Ann. Rev. Biochem. 56: 829–852.PubMedCrossRefGoogle Scholar
  253. Pimplikar, S.W. and Simons, K. (1993) Regulation of apical transport in epithelial cells by a Gs class of heterotrimeric G protein.Nature 362: 456–458.PubMedCrossRefGoogle Scholar
  254. Pind, S.N., Nuoffer, C., McCaffery, J.M., Plutner, H., Davidson, H.W., Farquhar, M.G. and Balch, W.E. (1994) Rabl and Ca2+ are required for the fusion of carrier vesicles mediating endoplasmic reticulum to Golgi transport.J. Cell Biol. 125: 239–252.PubMedCrossRefGoogle Scholar
  255. Pohlmann, R., Boeker, M.W. and von Figura, K. (1995) The two mannose 6-phosphate receptors transport distinct complements of lysosomal proteins.J. Biol. Chem. 270: 27311–27318.PubMedCrossRefGoogle Scholar
  256. Predescu, D., Horvat, R., Predescu, S. and Palade, G.E. (1994) Transcytosis in the continuous endothelium of the myocardial microvasculature is inhibited by N-ethylmaleimide.Proc. Natl Acad. Sci. USA 91: 3014–3018.PubMedCentralPubMedCrossRefGoogle Scholar
  257. Predescu, S., Predescu, D. and Palade, G.E. (1997) Plasmalemmal vesicles function as transcytotic carriers for small proteins in the continuous endothelium.Am. J. Physiol. 272: H937–H949.PubMedGoogle Scholar
  258. Price, L.S., Norman, J.C., Ridley, A.J. and Koffer, A. (1995) The small GTPases Rac and Rho as regulators of secretion in mast cells.Curr. Biol. 5: 68–73.PubMedCrossRefGoogle Scholar
  259. Pryer, N.K., Wuestehube, L.J. and Schekman, R. (1992) Vesicle-mediated protein sorting.Ann. Rev. Biochem. 61: 471–516.PubMedCrossRefGoogle Scholar
  260. Quinn, P., Griffiths, G. and Warren, G. (1984) Density of newly synthesized plasma membrane proteins in intracellular membranes II. Biochemical studies.J. Cell Biol. 98: 2142–2147.PubMedCrossRefGoogle Scholar
  261. Rabouille, C., Hui, N., Kiekbusch, R., Berger, E.G., Graham, G. and Nilsson, T. (1995) Mapping of the distribution of Golgi enzymes involved in the construction of complex oligosaccharides.J. Cell Sci. 108: 1617–1627.PubMedGoogle Scholar
  262. Raposo, G., van Santen, H.M., Leijendekker, R., Geuze, H.J. and Ploegh, H.L. (1995) Misfolded major histocompatibility complex class I molecules accumulate in an expanded ER-Golgi intermediate compartment.J. Cell Biol. 131: 1403–1419.PubMedCrossRefGoogle Scholar
  263. Rizzolo, L.J., Finidori, J., Gonzalez, A., Arpin, M., Ivanov, I.E., Adesnik, M. and Sabatini, D.D. (1985) Biosynthesis and intracellular sorting of growth hormone-viral envelope glycoprotein hybrids.J. Cell Biol. 101: 1351–1362.PubMedCrossRefGoogle Scholar
  264. Robinson, M.S. (1993) The role of clathrin, adaptors and dynamin in endocytosis.Curr. Opin. Cell Biol. 6: 538–544.CrossRefGoogle Scholar
  265. Robinson, M.S. (1997) Coats and vesicle budding.Trends Cell Biol. 7: 99–102.PubMedCrossRefGoogle Scholar
  266. Robinson, M.S. and Kreis, T.E. (1992) Recruitment of coat proteins onto Golgi membranes in intact and permeabilized cells: effect of brefeldin A and G protein activators.Cell 69: 129–138.PubMedCrossRefGoogle Scholar
  267. Roth, J. and Berger, E.G. (1982) Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase intrans-Golgi cisternae.J. Cell Biol. 93: 223–229.PubMedCrossRefGoogle Scholar
  268. Roth, J., Taatjes, D.J., Lucocq, J.M., Weinstein, J. and Paulson, J.C. (1985) Demonstration of an extensivetrans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation.Cell 43: 287–295.PubMedCrossRefGoogle Scholar
  269. Roth, J., Taatjes, D.J., Weinstein, J., Pauslon, J.C., Greenwell, P. and Watkins, W.M. (1986) Differential subcompartmentation of terminal glycosylation in the Golgi apparatus of intestinal absorptive and goblet cells.J. Biol. Chem. 261: 14307–14312.PubMedGoogle Scholar
  270. Roth, J., Wang, Y., Eckhardt, A. and Hill, R.L. (1994) Subcellular localization of the UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-mediated 0-glycosylation reaction in the submaxillary gland.Proc. Natl Acad. Sci. USA 91: 8935–8939.PubMedCentralPubMedCrossRefGoogle Scholar
  271. Rothberg, K.G., Heuser, J.E., Donzell, W.C., Ying, Y.S., Glenney, J.R. and Anderson, R.G. (1992) Caveolin, a protein component of caveolae membrane coats.Cell 68: 673–682.PubMedCrossRefGoogle Scholar
  272. Rothberg, K.G., Ying, Y.S., Kolhouse, J.F., Kamen, B.A. and Anderson, R.G. (1990) The glycophospholipidlinked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway.J. Cell Biol. 110: 637–649.PubMedCrossRefGoogle Scholar
  273. Rothman, J.E. (1994) Mechanisms of intracellular protein transport.Nature 372: 55–61.PubMedCrossRefGoogle Scholar
  274. Rothman, J.E. and Orci, L. (1992) Molecular dissection of the secretory pathway.Nature 355: 409–415.PubMedCrossRefGoogle Scholar
  275. Rothman, J.E. and Orci, L. (1996) Budding vesicles in living cells.Sci. Am. 274: 70–75.PubMedCrossRefGoogle Scholar
  276. Rothman, J.E. and Wieland, F.T. (1996) Protein sorting by transport vesicles.Science 272: 227–234.PubMedCrossRefGoogle Scholar
  277. Rybin, V., Ullrich, O., Rubino, M., Alexandrov, K., Simon, I., Seabra, C., Goody, R. and Zerial, M. (1996) GTPase activity of RabS acts as a timer for endocytic membrane fusion.Nature 383: 266–269.PubMedCrossRefGoogle Scholar
  278. Salama, N.R. and Schekman, R.W. (1995) The role of coat proteins in the bisynthesis of secretory proteins.Curr. Opin. Cell Biol. 7: 536–543.PubMedCrossRefGoogle Scholar
  279. Salamero, J., Sztul, E.S. and Howell, K.R. (1990) Exocytic transport vesicles generatedin vitro from thetrans-Golgi network carry both secretory and plasma membrane proteins.Proc. Natl. Acad. Sci USA 87: 7717–7721.PubMedCentralPubMedCrossRefGoogle Scholar
  280. Salpeter, M. and Farquhar, M.G. (1981) High resolution autoradiographic analysis of the secretory pathway in mammotrophs of the rat anterior pituitary.J. Cell Biol. 91: 240–246.PubMedCrossRefGoogle Scholar
  281. Sambrook, J.F. (1990) The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum.Cell 61: 197–199.PubMedCrossRefGoogle Scholar
  282. Sapperstein, S.K., Lupashin, V.V., Schmitt, H.D. and Waters, M.G. (1996) Assembly of the ER to Golgi SNARE complex requires Usolp.J. Cell Biol. 132: 755–767.PubMedCrossRefGoogle Scholar
  283. Saraste, J. and Kuismanen, E. (1992) Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex.Sem. Cell Biol. 3: 343–355.CrossRefGoogle Scholar
  284. Saraste, J., Palade, G.E. and Farquhar, M.G. (1987) Antibodies to rat pancreas Golgi subfractions: Identification of a 58 kD cis-Golgi protein.J. Cell Biol. 105: 2021–2029.PubMedCrossRefGoogle Scholar
  285. Saraste, J. and Svensson, K. (1991) Distribution of the intermediate elements operating in ER to Golgi transport.J. Cell Sci. 100: 415–430.PubMedGoogle Scholar
  286. Sargiacomo, M., Sudol, M., Tang, Z. and Lisanti, M.P. (1993) Signal transducing molecules and glycosylphosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells.J. Cell Biol. 122: 789–807.PubMedCrossRefGoogle Scholar
  287. Satoh, T., Ross, C.A., Villa, A., Supattapone, S., Pozzan, T., Snyder, S.H. and Meldolesi, J. (1990) The inositol 1,4,5-trisphosphate receptor in cerebellar Purkinje cells: Quantitative immunogold labelling reveals concentration in an ER subcompartment.J. Cell Biol. 111: 615–624.PubMedCrossRefGoogle Scholar
  288. Saucan, L. and Palade, G.E. (1994) Membrane and secretory proteins are transported from the Golgi complex to the sinusoidal plasmalemma of hepatocytes by distinct vesicular carriers.J. Cell Biol. 125: 733–741.PubMedCrossRefGoogle Scholar
  289. Scheel, A.A. and Pelham, H.R. (1996) Purification and characterization of the human KDEL receptor.Biochemistry 35: 10203–10209.PubMedCrossRefGoogle Scholar
  290. Scheiffele, P., Peränen, J. and Simons, K. (1995) N-glycans as apical sorting signals in epithelial cells.Nature 378: 96–98.PubMedCrossRefGoogle Scholar
  291. Schekman, R. and Orci, L. (1996) Coat proteins and vesicle budding.Science 271: 1526–1533.PubMedCrossRefGoogle Scholar
  292. Schell, M.J., Maurice, M., Stieger, B. and Hubbard, A.L. (1992) 5’ nucleotidase is sorted to the apical domain of hepatocytes via an indirect route.J. Cell Biol. 119: 1173–1182.PubMedCrossRefGoogle Scholar
  293. Scheller, R.H. (1995) Membrane trafficking in the presynaptic nerve terminal.Neuron 14: 893–897.PubMedCrossRefGoogle Scholar
  294. Schiavo, G., Stenbeck, G., Rothman, J.E. and Söllner, T.H. (1997) Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses.Proc. Natl Acad. Sci. USA 94: 997–1001.PubMedCentralPubMedCrossRefGoogle Scholar
  295. Schimmöller, F., Singer-Kruger, B., Schröder, S., Kruger, U., Barlowe, C. and Riezman, H. (1995) The absence of Emp24p, a component of ER-derived COP II-coated vesicles, causes a defect in transport of selected proteins to the Golgi.EMBO J. 14: 1329–1339.PubMedCentralPubMedGoogle Scholar
  296. Schindler, R., Itin, C., Zerial, M., Lottspeich, F. and Hauri, H.-P. (1993) ERGIC-53, a membrane protein of the ER-Golgi intermediate compartment carries an ER retention motif.Eur. J. Cell Biol. 61: 1–9.PubMedGoogle Scholar
  297. Schmalzing, G., Richter, H.P., Hansen, A., Schwarz, W., Just, I. and Aktories, K. (1995) Involvement of the GTP binding protein Rho in constitutive endocytosis inXenopus laevis oocytes.J. Cell Biol. 130: 1319–1332.PubMedCrossRefGoogle Scholar
  298. Schmid, S.L. and Dahmke, H. (1995) Coated vesicles: a diversity of form and function.FASEB J. 9: 1445–1453.PubMedGoogle Scholar
  299. Schnabel, E., Mains, R.E. and Farquhar, M.G. (1989) Proteolytic processing of pro-ACTH/endorphin begins in the Golgi complex of pituitary corticotropes and AtT-20 cells.Molec. Endocr. 89: 1223–1235.CrossRefGoogle Scholar
  300. Schnefel, S., Zimmermann, P., Pröfrock, A., Jahn, R., Aktories, K., Zeuzem, S., Haase, W. and Schulz, I. (1992) High-and small-molecular-weight GTP-binding proteins in zymogen granule membranes of rat pancreatic acinar cells.Cell Physiol. Biochem. 2: 77–89.CrossRefGoogle Scholar
  301. Schnepf, E. (1993) Golgi apparatus and slime secretion in plants: the early implications and recent models of membrane traffic.Protoplasma 172: 3–11.CrossRefGoogle Scholar
  302. Schnitzer, J.E., Liu, J. and Oh, P. (1995) Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases.J. Biol. Chem. 270: 14399–14404.PubMedCrossRefGoogle Scholar
  303. Schnitzer, J.E., Oh, P. and McIntosh, D.P. (1996) Role of GTP hydrolysis in fission of caveolae directly from the plasma membrane.Science 274: 239–242.PubMedCrossRefGoogle Scholar
  304. Schutze, M.-P., Peterson, P.A. and Jackson, M.R. (1994) An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum.EMBO J. 13: 1696–1705.PubMedCentralPubMedGoogle Scholar
  305. Schweizer, A., Clausen, H., van Meer, G. and Hauri, H.-P. (1994) Localization of 0-glycan initiation, sphingomyelin synthesis, and glucosylceramide synthesis in Vero cells with respect to the endoplasmic reticulum - Golgi intermediate compartment.J. Biol. Chem. 269: 4035–4041.PubMedGoogle Scholar
  306. Schweizer, A., Fransen, J.A., Matter, K., Kreis, T.E., Ginsel, L. and Hauri, H.-P. (1990) Identification of an intermediate compartment involved in protein transport from endoplasmic reticulum to Golgi apparatus.Eur. J. Cell Biol. 53: 185–196.PubMedGoogle Scholar
  307. Schweizer, A., Fransen, J.A.M., Bächi, T., Ginsel, L. and Hauri, H.-P. (1988) Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulovesicular compartment at the cis-side of the Golgi apparatus.J. Cell Biol. 107: 1643–1653.PubMedCrossRefGoogle Scholar
  308. Schweizer, A., Matter, K., Ketcham, C.M. and Hauri, H.-P. (1991) The isolated ER-Golgi intermediate compartment exhibits properties that are different from ER and cis-Golgi.J. Cell Biol. 113: 45–54.PubMedCrossRefGoogle Scholar
  309. Seaman, M.N., Burd, C.G. and Emr, S.D. (1996) Receptor signalling and the regulation of endocytic membrane transport.Curr. Opin. Cell Biol. 8: 549–556.PubMedCrossRefGoogle Scholar
  310. Seelig, H.P., Schranz, P., Schröter, H., Wiemann, C., Griffiths, G. and Renz, M. (1994) Molecular genetic analyses of a 376-kD Golgi complex membrane protein (Giantin).Molec. Cell Biol. 14: 2564–2576.PubMedCentralPubMedCrossRefGoogle Scholar
  311. Serafini, T., Stenbeck, G., Brecht, A., Lottspeich, F., Orci, L., Rothman, J. and Wieland, F.T. (1991) A coat subunit of Golgi-derived nonclathrin coated vesicles with homology to the clathrin coated vesicle coat protein betaadaptin.Nature 349: 215–220.PubMedCrossRefGoogle Scholar
  312. Shaper, J.H. and Shaper, N.L. (1992) Enzymes associated with glycosylation.Curr. Struct. Biol. 2: 701.CrossRefGoogle Scholar
  313. Shaywitz, D.A., Orci, L., Ravazzola, M., Swaroop, A. and Kaiser, C. (1995) Human SEC13p functions in yeast and is located on transport vesicles budding from the endoplasmic reticulum.J. Cell Biol. 128: 769–777.PubMedCrossRefGoogle Scholar
  314. Sheff, D., Lowe, M., Kreis, T.E. and Mellman, I. (1996) Biochemical heterogeneity and phosphorylation of coatomer subunits.J. Biol. Chem. 271: 7230–7236.PubMedCrossRefGoogle Scholar
  315. Simionescu, M., Simionescu, N. and Palade, G.E. (1982) Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors.J. Cell Biol. 94: 406–413.PubMedCrossRefGoogle Scholar
  316. Simon, J.-P., Ivanov, I.E., Ren, M., Zeng, J., Shopsin, B., Hersh, D., Tempst, P., Erdjument-Bromage, H., Lui, M., De Lemos-Chiarandini, C., Rosenfeld, M., Gravotta, D., Morimoto, T., Adesnik, M. and Sabatini, D.D. (1995) Regulation of post-Golgi vesicle production in anin vitro system. In:Protein kinesis: The dynamics of protein trafficking and stability. Cold Spring Harbor Symposia on Quantitative Biology 60: 179–195.Google Scholar
  317. Simon, J.P., Ivanov, I.E., Adesnik, M. and Sabatini, D.D. (1996a). The production of post-Golgi vesicles requires a protein kinase C-like molecule, but not its phosphorylating activity.J. Cell Biol. 135: 355–370.PubMedCrossRefGoogle Scholar
  318. Simon, J.P., Ivanov, I.E., Shopsin, B., Hersh, D., Adesnik, M. and Sabatini, D.D. (1996b). Thein vitro generation of post-Golgi vesicles carrying viral envelope glycoproteins requires an ARF-like GTP-binding protein and a protein kinase C associated with the Golgi apparatus:J. Biol. Chem. 271: 16952–16961.PubMedCrossRefGoogle Scholar
  319. Simons, K. and van Meer, G. (1988) Lipid sorting in epithelial cells.Biochemistry 27: 6197–6202.PubMedCrossRefGoogle Scholar
  320. Simons, K. and Virta, H. (1987) Perforated MDCK cells support intracellular transport.EMBO J. 6: 2241–2247.PubMedCentralPubMedGoogle Scholar
  321. Simons, K. and Zerial, M. (1993) Rab proteins and the road maps for intracellular transport.Neuron 11: 789–799.PubMedCrossRefGoogle Scholar
  322. Simpson, F., Bright, N.A., West, M.A., Newman, L.S., Darnell, R.B. and Robinson, M.S. (1996) A novel adaptor-related protein complex.J. Cell Biol. 133: 749–760.PubMedCrossRefGoogle Scholar
  323. Sitia, R. and Meldolesi, J. (1992) Endoplasmic reticulum: a dynamic patchwork of specialized subregions.Molec. Biol. Cell 3: 1067–1072.PubMedCentralPubMedCrossRefGoogle Scholar
  324. Sjoberg, E.R. and Varki, A. (1993) Kinetic and spatial interrelationships between ganglioside glycosyltransferases and O-acetyltransferase(s) in human melanoma cells.J. Biol. Chem. 168: 10185–10196.Google Scholar
  325. Skinner, H.B., McGee, T.P., McMaster, C.R., Fry, M.R., Bell, R.M. and Bankaitis, V.A. (1995) TheSaccharomyces cerevisiae phosphatidylinositol-transfer protein effects a ligand-dependent inhibition of choline-phosphate cytidylyltransferase activity.Proc. Nall Acad. Sci. USA 92: 112–116.CrossRefGoogle Scholar
  326. Smart, E.J., Ying, Y.S., Conrad, P.A. and Anderson, R.G. (1994) Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation.J. Cell Biol. 127: 1185–1197.PubMedCrossRefGoogle Scholar
  327. Sogaard, M., Tani, K., Ye, R.R., Geromanos, S., Tempst, P., Kirchhausen, T., Rothman, J.E. and Söllner, T. (1994) A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles.Cell 78: 937–948.PubMedCrossRefGoogle Scholar
  328. Sohn, K., Orci, L., Ravazzola, M., Amherdt, M., Bremser, M., Lottspeich, F., Fiedler, K., Helms, J.B. and Wieland, F.T. (1996) A major transmembrane protein of Golgi-derived COP I-coated vesicles involved in coatomer binding.J. Cell Biol. 135: 1239–1248.PubMedCrossRefGoogle Scholar
  329. Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. and Rothman, J.E. (1993a). A protein assembly-disassembly pathwayin vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.Cell 75: 409–418.PubMedCrossRefGoogle Scholar
  330. Söllner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, S., Geromanos, P., Tempst, P. and Rothman, J.E. (1993b). SNAP receptors implicated in vesicle targeting and fusion.Nature 362: 318–324.PubMedCrossRefGoogle Scholar
  331. Sönnichsen, B., Füllekrug, J., van Nguyen, P., Diekmann, W., Robinson, D.G. and Mieskes, G. (1994) Retention and retrieval: both mechanisms cooperate to maintain calreticulin in the endoplasmic reticulum.J. Cell Sci. 107: 2705–2717.PubMedGoogle Scholar
  332. Stack, J.H., Horazdovsky, B. and Emr, S.D. (1995) Receptor-mediated protein sorting to the vacuole in yeast: roles for a protein kinase, a lipid kinase and GTP-binding proteins.Ann. Rev. Cell Develop. Biol. 11: 1–33.CrossRefGoogle Scholar
  333. Stamnes, M.A., Craighead, M.W., Hoe, M.H., Lampen, N., Geromanos, S., Tempst, P. and Rothman, J.E. (1995) An integral membrane component of coatomer-coated transport vesicles defines a family of proteins involved in budding.Proc. NatlAcad. Sci. USA 92: 8011–8015.CrossRefGoogle Scholar
  334. Stamnes, M.A. and Rothman, J.E. (1993) The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein.Cell 73: 999–1005.PubMedCrossRefGoogle Scholar
  335. Stanley, K.K. and Howell, K.E. (1993) TGN38/41: a molecule on the move.Trends Cell Biol. 3: 252–255.PubMedCrossRefGoogle Scholar
  336. Steinhardt, R.A., Bi, G. and Alderton, J.M. (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release.Science 263: 390–393.PubMedCrossRefGoogle Scholar
  337. Stenmark, H., Vitale, G., Ullrich, O. and Zerial, M. (1995) Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion.Cell 83: 423–432.PubMedCrossRefGoogle Scholar
  338. Stinchcombe, J.C., Nomoto, H., Cutler, D.F. and Hopkins, C.R. (1995) Anterograde and retrograde traffic between the rough endoplasmic reticulum and the Golgi complex.J. Cell Biol. 131: 1387–1401.PubMedCrossRefGoogle Scholar
  339. Stow, J.L. (1995) Regulation of vesicular transport by GTP-binding proteins.Curr. Opin. Nephrol. Hypertension 4: 421–425.CrossRefGoogle Scholar
  340. Stow, J.L., de Almeida, J.B., Narula, N., Holzman, E.J., Ercolani, L. and Ausiello, D.A. (1991) A heterotrimeric G protein, G-alpha-i-3, on Golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLC-PKI epithelial cells.J. Cell Biol. 114: 1113–1124.PubMedCrossRefGoogle Scholar
  341. Südhof, T.C. (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions.Nature 375: 645–653.PubMedCrossRefGoogle Scholar
  342. Takei, K., McPherson, P.S., Schmid, S.L. and De Camilli, P. (1995) Dynamin coated tubular membrane invaginations induced by GTP-gS in nerve terminals.Nature 374: 186–190.PubMedCrossRefGoogle Scholar
  343. Tang, B.L., Peter, F., Krijnse-Locker, J., Low, S.H., Griffiths, G. and Hong, W. (1997) The mammalian homolog of yeast Sec13p is enriched in the intermediate compartment and is essential for protein transport from the endoplasmic reticulum to the Golgi apparatus.Mol. Cell Biol. 17: 256–266.PubMedCentralPubMedCrossRefGoogle Scholar
  344. Tang, B.L., Wong, S.H., Low, S.H. and Hong, W. (1992) The transmembrane domain of N-glucosaminyltransferase I contains a Golgi retention signal.J. Biol. Chem. 267: 10122–10126.PubMedGoogle Scholar
  345. Tang, B.L., Wong, S.H., Qi, X.L., Low, S.H. and Hong, W. (1993) Molecular cloning, characterization, subcellular localization and dynamics of p23, the mammalian KDEL receptor.J. Cell Biol. 120: 325–328.PubMedCrossRefGoogle Scholar
  346. Tatu, U. and Helenius, A. (1997) Interactions between newly synthesized glycoproteins, calnexin and a network of resident chaperones in the endoplasmic reticulum.J. Cell Biol. 136: 555–565.PubMedCentralPubMedCrossRefGoogle Scholar
  347. Teasdale, R.D., D’Agnostaro, G. and Gleeson, P.A. (1992) The signal for Golgi retention of bovine f31,4-galactosyltransferase is in the transmembrane domain.J. Biol. Chem. 267: 4084–4096.PubMedGoogle Scholar
  348. Teasdale, R.D. and Jackson, M.R. (1996) Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the Golgi apparatus.Ann. Rev. Cell Develop. Biol. 12: 27–54.CrossRefGoogle Scholar
  349. TerBusch, D.R. and Novick, P. (1995) Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccaromyces cervisiae.J. Cell Biol. 130: 299–312.CrossRefGoogle Scholar
  350. Terni, T., Kahn, R.A. and Randazzo, P.A. (1994) Effects of acid phospholipids on nucleotide exchange properties of ADP-ribosylation factor 1. Evidence for specific interaction with phosphatidylinositol 4,5-bisphosphate.J. Biol. Chem. 269: 28130–28235.Google Scholar
  351. Ting, A.E. and Scheller, R.H. (1995) Insights into the molecular mechanisms of synaptic vesicle docking and fusion.Cold Spring Harbor Symp. Quant. Biol. 60: 361–369.PubMedCrossRefGoogle Scholar
  352. Tooze, S.A. and Huttner, W.B. (1990) Cell-free protein sorting to the regulated and constitutive secretory pathways.Cell 60: 837–847.PubMedCrossRefGoogle Scholar
  353. Townsley, F. and Pelham, H.R.B. (1994) The KKXX signal mediates retrieval of membrane proteins from the Golgi to the ER in yeast.Eur. J. Cell Biol. 64: 211–216.PubMedGoogle Scholar
  354. Traub, L.M. (1997) Clathrin-associated adaptor proteins-putting it all together.Trends Cell Biol. 7: 43–46.PubMedCrossRefGoogle Scholar
  355. Traub, L.M., Kornfeld, S. and Ungewickell, E. (1995) Different domains of the AP-1 adaptor complex are required for Golgi membrane binding and clathrin recruitment.J. Biol. Chem. 270: 4933–4942.PubMedCrossRefGoogle Scholar
  356. Traub, L.M., Ostrom, J.A. and Kornfeld, S. (1993) Biochemical dissection of AP-1 recruitment onto Golgi membranes.J. Cell Biol. 123: 561–573.PubMedCrossRefGoogle Scholar
  357. Trowbridge, I.S., Collawn, J.F. and Hopkins, C.R. (1993) Signal-dependent membrane protein trafficking in the endocytic pathway.Ann. Rev. Cell Biol. 9: 129–161.PubMedCrossRefGoogle Scholar
  358. Ungewickell, E., Ungewickell, H., Holstein, S.E., Linder, R., Prasad, K., Barouch, W., Martin, B., Greene, L.E. and Eisenberg, E. (1995) Role of auxilin in uncoating clathrin-coated vesicles.Nature 378: 632–635.PubMedCrossRefGoogle Scholar
  359. Urrutia, R., Henley, J.R., Cook, T. and McNiven, M.A. (1997) The dynamins: Redundant or distinct functions for an expanding family of related GTPases?Proc. Natl Acad. Sci. USA 94: 377–384.PubMedCentralPubMedCrossRefGoogle Scholar
  360. Vallee, R.B. and Okamoto, P.M. (1995) The regulation of endocytosis: identifying dynamin’s binding partners.Trends Cell Biol. 5: 43–47.PubMedCrossRefGoogle Scholar
  361. Van Der Sluijs, P., Hull, M., Zahraoui, A., Tavitian, A., Goud, B. and Mellman, I. (1991) The small GTP-binding protein rab4 is associated with early endosomes.Proc. Natl Acad. Sci. USA 88: 6313–7.CrossRefGoogle Scholar
  362. Velasco, A., Hendricks, L., Moreman, K.W., Tulsiani, D.R.P., Touster, O. and Farquhar, M.G. (1993) Cell type-dependent variations in the subcellular distribution of a-mannosidase I and II.J. Cell Biol. 122: 39–51.PubMedCrossRefGoogle Scholar
  363. Vertel, B.M., Velasco, A., LaFrance, S., Waters, L. and Kaczman-Daniel, K. (1989) Precursors of chondroitin sulfate proteoglycan are segregated within a subcompartment of the chondrocyte endoplasmic reticulum.J. Cell Biol. 109: 1827–1836.PubMedCrossRefGoogle Scholar
  364. Villa, A., Podini, P., Clegg, D.O., Poxxan, T. and Meldolesi, J. (1991) Intracellular Ca2+ stores in chicken Purkinje neurons: Differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER luminal protein, BiP.J. Cell Biol. 113: 779–791.PubMedCrossRefGoogle Scholar
  365. Wada, I., Rindress, D., Cameron, P.H., Ou, W.J., Doherty, J.J.D., Louvard, D., Bell, A.W., Dignard, D., Thomas, D.Y. and Bergeron, J.J. (1991) SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane.J. Biol. Chem. 266: 19599–19610.PubMedGoogle Scholar
  366. Wandinger-Ness, A., Bennett, M.K., Antony, C. and Simons, K. (1990) Distinct transport vesicles mediate the delivery of plasma membrane proteins to the apical and basolateral domains of MDCK cells.J. Cell Biol. 111: 987–1000.PubMedCrossRefGoogle Scholar
  367. Wang, J., Ladinsky, M.S. and Howell, K.E. (1995) Molecules and vesicle coats involved in the budding of exocytic vesicles from thetrans-Golgi network.Cold Spring Harbor Symp. Quant. Biol. 60: 139–146.PubMedCrossRefGoogle Scholar
  368. Warnock, D.E. and Schmid, S.L. (1996) Dynamin GTPases, a force-generating molecular switch.Bio Essays 18: 885–893.Google Scholar
  369. Waters, M.G., Serafini, T. and Rothman, J.E. (1991) Coatomer: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles.Nature 349: 248–251.PubMedCrossRefGoogle Scholar
  370. Weber, E., Berta, G., Tousson, A., St John, P., Green, M.W., Gopalokrishnan, U., Jilling, T., Sorscher, E.J., Elton, T.S., Abrahamson, D.R. and Kirk, K. (1994) Expression and polarized targeting of a rab3 isoform in epithelial cells.J. Cell Biol. 125: 583–94.PubMedCrossRefGoogle Scholar
  371. Weimbs, T., Low, S.H., Chapin, S.J., Whiteheart, S.W., Bennett, M.K. and Mostov, K.E. (1996) The role of the NSF/SNAP/SNARE vesicular fusion machinery in protein targeting in polarized epithelial cells.Molec. Biol. Cell 7: 445a.Google Scholar
  372. Weisz, O.A., Swift, A.M. and Machamer, C.E. (1993) Oligomerization of a membrane protein correlates with its retention in the Golgi complex.J. Cell Biol. 122: 1185–1196.PubMedCrossRefGoogle Scholar
  373. Whitney, J.A. and Kreis, T.E. (1996) Identification of novel coatomer and adaptin-related proteins.Molec. Biol. Cell 7: 79a.Google Scholar
  374. Whitney, J.A., Gomez, M., Sheff, D., Kreis, T.E. and Mellman, I. (1995) Cytoplasmic coat proteins involved in endosome function.Cell 83: 703–713.PubMedCrossRefGoogle Scholar
  375. Wieland, F.T., Gleason, M.L., Serafini, T.A. and Rothman, J.E. (1987) The rate of bulk flow from the endoplasmic reticulum to the cell surface.Cell 50: 289–300.PubMedCrossRefGoogle Scholar
  376. Wiertz, E.J.H. J., Tortorella, D., Bogyo, M., Yu, J., Mothes, W., Jones, T.R., Rapoport, T.A. and Ploegh, H.L. (1996) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction.Nature 384: 432–438.PubMedCrossRefGoogle Scholar
  377. Wilde, A. and Brodsky, F.M. (1996)In vivo phosphorylation of adaptors regulates their interaction with clathrin.J. Cell Biol. 135: 635–645.PubMedCrossRefGoogle Scholar
  378. Wilson, B.S., Komuro, M. and Farquhar, M.G. (1994) Cellular variations in heterotrimeric G-protein localization and expression in rat pituitary.Endocrinology 134: 233–244.PubMedGoogle Scholar
  379. Wong, S.H., Low, S.H. and Hong, W. (1992) The 17-residue transmembrane domain of 13-galactoside a2,6-sialyltransferase is sufficient for Golgi retention.J. Cell Biol. 117: 245–258.PubMedCrossRefGoogle Scholar
  380. Woods, J.W., Goodhouse, J. and Farquhar, M.G. (1989) Transferrin receptors and cation-independent mannose 6-phosphate receptors deliver their ligands to two distinct subpopulations of multivesicular endosomes.Eur. J. Cell Biol. 50: 132–143.PubMedGoogle Scholar
  381. Xu, H. and Shields, D. (1993) Prohormone processing in thetrans-Golgi network: endoproteolytic cleavage of prosomatostatin and formation of nascent secretory vesicles in permeabilized cells.J. Cell Biol. 122: 1169–1184.PubMedCrossRefGoogle Scholar
  382. Yoshimori, T., Keller, P., Roth, M.G. and Simons, K. (1996) Different biosynthetic transport routes to the plasma membrane in BHK and CHO cells.J. Cell Biol. 133: 247–256.PubMedCrossRefGoogle Scholar
  383. Yuan, L., Barriocanal, J.G., Bonifacino, J.S. and Sandoval, I.V. (1987) Two integral membrane proteins located in the cis-middle andtrans-part of the Golgi system acquire sialylated N-linked carbohydrates and display different turnovers and sensitivity to cAMP-dependent phosphorylation.J. Cell Biol. 105: 215–227.PubMedCrossRefGoogle Scholar
  384. Zerial, M. and Stenmark, H. (1993) Rab GTPases in vesicular transport.Curr. Opin. Cell Biol. 5: 613–620.PubMedCrossRefGoogle Scholar
  385. Zhang, J.Z., Davletov, B.A., Südhof, T.C. and Anderson, R.G. (1994) Synaptogamin I is a high affinity receptor for clathrin AP-2: implications for membrane recycling.Cell 78: 751–760.PubMedCrossRefGoogle Scholar
  386. Zhao, L., Helms, J.B. and Wieland, F.T. (1996) ADP-ribosylation factor interacts directly with coatomer.Molec. Biol. Cell 7: 599a.Google Scholar
  387. Zheng, J., Cahill, S.M., Lemmon, M.A., Fushman, D., Schlessinger, J. and Cowburn, D. (1996) Identification of the binding site for acidic phospholipids on the pH domain of dynamin: implications for stimulation of GTPase activity.J. Molec. Biol. 255: 14–21.PubMedCrossRefGoogle Scholar
  388. Zurzolo, C., van’t Hof, W., van Meer, G. and Rodriguez-Boulan, E. (1994) VIP21/caveolin, glycosphingolipid clusters and the sorting of glycosylphosphatidylinositol-anchored proteins in epithelial cells.EMBO J. 13: 42–53.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Basel AG 1997

Authors and Affiliations

  • M. G. Farquhar
    • 1
  • H.-P. Hauri
    • 2
  1. 1.Division of Cellular and Molecular Medicine and Department of PathologyUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of Pharmacology, BiozentrumUniversity of BaselBaselSwitzerland

Personalised recommendations